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ABSTRACT

Chesley, Bruce Carl (Ph.D., Aerospace Engineering Sciences)
An Integrated GPS Attitude Determination System for Small Satellites

Thesis directed by Assistant Professor Penina Axelrad

This dissertation develops attitude determination methods based on the
Global Positioning System (GPS) for small satellites. A GPS attitude receiver is used
in combination with other sensors planned for a small, three-axis stabilized satellite
called JAWSAT. The other attitude sensors include fiber optic gyros and digital sun

SEnsors.

The development of integrated attitude determination systems contributes to
critical national technological objectives identified for small spacecraft. A recent
study by the National Research Council addresses key technologies for small satellite
programs. One of their principal recommendations was that, “GPS in various
combinations with other guidance components can determine position and attitude
very accurately, probably at significantly reduced weight and cost” [NRC, 1994, p.
4]. The report also identifies specific potential benefits of integrating GPS with other
sensors on small spacecraft. “Combining GPS and an inertial measurement unit (with
gyroscopes, accelerometers, or trackers) offers major advantages by bounding errors

of the inertial set, providing exceptionally good long-term references and thereby




v

ensuring precise, on-board navigation and, with appropriate complimentary
techniques, providing a higher level of redundancy and/or accuracy for position,
velocity, and attitude” [NRC, 1994, p. 61]. This dissertation develops algorithms
that result in improved accuracy and redundancy through the development of
complimentary techniques for combining GPS measurements with gyroscopes and

sun sensors.

A measurement differencing Kalman filter algorithm for spacecraft attitude
determination is developed that results in improved accuracy in the presence of GPS
multipath errors, the primary error source in GPS based attitude determination
systems. Multipath caﬁses time-correlated errors in the GPS attitude measurements;
these time-correlated errors are mitigated using the measurement differencing
approach. Improved redundancy is achieved by a decentralized state estimation
method based on the federated Kalman filter. Using a similar measurement
differencing technique, the decentralized filtering approach achieves improved
accuracy in addition to improved redundancy for an integrated system consisting of
GPS, gyros, and sun sensors. Finally, this dissertation addresses additional
spacecraft applications where integrating measurements for a GPS attitude receiver

with other sensors may lead to significant improvements in cost and performance.
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Chapter 1:

INTRODUCTION AND OVERVIEW

An emerging paradigm of better, faster, and cheaper space vehicles has
increased the number of small satellite projects in recent years. These small, often
highly capable spacecraft, have been developed by the Department of Defense (e.g.,
Clementine [NRC, 1994]), NASA (e.g., MSTI [NRC, 1994]), civilian commercial
enterprises (e.g., ORBCOMM) and universities (e.g., SNOE [LASP, 1994],
WEBERSAT [Twiggs and Reister, 1991]). In addition to the renewed interest in
small satellites, a desire to exploit the full capabilities of GPS for orbit and attitude
determination has also spread [e.g., Gold et al., 1995, Bauer et al., 1994]. This
dissertation ties together these two important themes in current spacecraft research
and development through the design of an integrated GPS attitude determination

system for small, low-cost satellites.

1.1 Motivation and Summary of Research Contributions

The Global Positioning System (GPS) has the capability to provide position,
velocity, attitude, and timing information to a satellite in low Earth orbit. This
combination of many functions in one instrument is attractive for small satellites,
where size, power, and cost are constrained. The motivation for this research is to

integrate GPS based attitude determination into the design of a small satellite. GPS




attitude measurements are used in conjunction with other on-board sensors to
develop accurate, robust attitude estimation algorithms. A demonstration vehicle for
this design is JAWSAT, the Joint Air Force Academy - Weber State University

Satellite.

The basic design methodology for low cost spacecraft, particularly university
sponsored satellites, is to try to extract the best possible performance from relatively
low cost sensors that are commercially available. In addition to their low cost,
instruments for university sponsored satellites must also typically possess attributes
such as low power consumption, low weight, and low volume. Together these

qualities frequently lead to poor performance as well.

The attitude sensors considered in this study are those found on JAWSAT: a
GPS attitude determination receiver, fiber optic gyros, and digital sun sensors. The
objective of this dissertation is to develop innovative methods for filtering the
dominant error types present in the attitude sensors found on JAWSAT. In
particular, minimizing the effects of GPS multipath errors, sun sensor quantization,

and gyro bias errors on the attitude solution is the primary focus of this research.

The research contributions of this dissertation include Kalman filtering
methods tailored to the sensors planned for a small three-axis stabilized spacecraft
such as JAWSAT. A measurement differencing Kalman filtering approach is

developed for gyro and GPS attitude measurements (Chapter 3). This approach




reduces attitude estimation errors due to GPS multipath. A filtering approach using
digital sun sensors and gyros is developed using a “dead zone” measurement update
for including quantized sun sensor measurements (Chapter 4). The first application
of federated filtering to spacecraft attitude determination is presented, and a new
federated filtering algorithm that uses measurement differencing to mitigate GPS
multipath errors is derived and demonstrated (Chapter 5). Preliminary results of a

nonlinear filtering approach for gyros and GPS are also developed (Chapter 6).

1.2 JAWSAT Mission and Design

JAWSAT is a combined effort to build, launch, and operate a small, three-
axis stabilized satellite in low Earth orbit. The mission of JAWSAT is to demonstrate
technologies for future space missions and to meet educational objectives for
students at tﬁe sponsoring institutions and at various secondary schools. Technology
demonstrations on the satellite include a GPS based attitude determination system,
two experimental pulse plasma thrusters (PPTs) for low-thrust orbit transfer, a CCD

camera, and a high energy particle detector.

JAWSAT will measure approximately 66cm X 53cm X 25cm and weigh less
than 100 kg at launch (Fig. 1.1). The baseline design calls for JAWSAT to be Earth-

pointing in a sun-synchronous noon-midnight orbit at an altitude of 500 km. Three-




axis stabilization will be achieved using reaction wheels and magnetic torque rods.

Four GPS antennas will be mounted at the corners of the zenith face.

The attitude determination system for JAWSAT must satisfy constraints on
power, size, weight, cost, and processor capabilities while meeting mission
requirements. The attitude control specifications require the spacecraft to point
within £ 5 degrees of nadir. In order to satisfy these pointing requirements, attitude
knowledge is desired within = 1 degrees in yaw, pitch, and roll to ensure adequate
margin for the control system. Cost and size constraints limit the accuracy of the

attitude determination sensors available.

NADIR

Fig. 1.1. JAWSAT Structure with Solar Panels Deployed.

The experience of designing, fabricating, and operating a small satellite is an
important objective for undergraduate students at the Air Force Academy and Weber
State University. Students at primary and secondary schools will also be involved in

JAWSAT once it is on orbit by receiving synthesized voice messages and video




images directly in their classrooms. The messages and images will be received with a

personal computer and a low cost receiver (less than $300).

Weber State University and the Air Force Academy each have a history of
space experiments that led to their collaboration on JAWSAT. Weber State
University has been designing small satellites for over ten years. Previous successful
launches include NUSAT I in 1985 and WEBERSAT, a small video imaging satellite
launched in January 1990 that is still operational [Hansen et al., 1991; Twiggs and
Reister, 1991] . Previous space experiments sponsored by the USAFA Department
of Astronautics include two Get Away Special (GAS) canisters flown on the Space
Shuttle. A third GAS can experiment is scheduled for launch in 1994. Participation
in JAWSAT is planned to lead to a follow-on satellite built entirely at the Air Force

Academy called USAFASAT L.

Out-of-pocket expenses for JAWSAT are being kept to a minimum, but the
actual cost of the project is difficult to estimate since so much time and equipment is
being volunteered or donated [Reeves, 1994]. USAFA and Weber State are
partners in sharing equipment expenses, and USAFA is taking the lead in securing
the satellite launch. USAFA will also provide some of the on-board instruments,
including a GPS attitude receiver (actually being facilitated by the University of
Colorado), a high-energy particle detector, and a sun sensor assembly. A ground
station for control of JAWSAT vﬁll be installed at USAFA for cadets to gain

practical experience as satellite operators.




1.3 JAWSAT Attitude Determination System

The attitude determination system for JAWSAT consists of a GPS attitude
determination receiver (the Trimble TANS Vector), low cost gyroscopes, and digital
sun sensors. The basic design philosophy of the attitude determination system is to
use GPS and sun sensors to estimate gyro drift parameters in order to achieve the
best possible overall accuracy. The idea of obtaining accurate spacecraft attitude
estimates by combining measurements from less accurate sensors in a Kalman filter is
not new [e.g., Farrell, 1970], but the inclusion of a GPS attitude determination
receiver introduces new aspects of the sensor integration related to multipath errors

in the GPS measurements.

The ability of GPS and sun sensors to update the gyro drift estimates is
limited by certain mission constraints. During eclipse periods the sun sensors cannot
be used to correct gyro drift. GPS attitude measurement availability will be limited
by the scheduling of payload operations. In particular, the GPS receiver will not be
used while the PPTs are firing for two reasons. First, the PPTs generate a great deal
of radio frequency noise; so in order to prevent interference with the GPS receiver,
the receiver will be deactivated during PPT firings. Second, the power consumption
of the PPTs is quite large, so turning off the GPS receiver will help provide enough
power to perform PPT orbit maneuvering experiments. The thrust of the PPT

engines is very small, so in order to effect any orbit maneuvers the engines will fire




pulses continuously for approximately half of each orbit during which maneuvers are
being performed. In short, the mission constraints imposed by the PPTs and eclipse
periods mean that each contributing sensor will be available to update gyro drift
parameters approximately half of each orbit period. Figure 1.2 illustrates the
JAWSAT orbit and mission constraints for the attitude determination system. The
final orbit parameters for JAWSAT have not been established, but the design
constraints represent general design considerations for the attitude determination
system. The desired orbit for JAWSAT is a sun-synchronous orbit, and the

availability of launch opportunities will dictate the actual orbit parameters.

JAWSAT

Fig. 1.2. JAWSAT sun synchronous orbit. Figure shows JAWSAT in an Earth
pointing attitude and a noon-midnight, sun synchronous orbit. During the eclipse
period no sun sensor measurements are available. During PPT firing no GPS
measurements are available.

1.4 Overview

The remainder of this dissertation is organized as follows. Chapter 2

" provides background on spacecraft attitude estimation and the computer simulation

methodology used to evaluate attitude determination algorithms. Chapter 3 presents




Kalman filtering algorithms for GPS and gyro measurements, including a
measurement differencing algorithm that reduces errors due to GPS multipath.
Chapter 4 concentrates on filtering algorithms for digital sun sensors and gyros.
Chapter 5 presents decentralized Kalman filtering algorithms for an integrated
attitude determination system using GPS, gyros, and digital sun sensors. Chapter 6
presents a preliminary analysis of a nonlinear filter for integrated GPS attitude
determination, and Chapter 7 recommends areas for future research and summarizes

the key findings of this dissertation.




Chapter 2:

BACKGROUND

Attitude determination is the problem of expressing the orientation of a
spacecraft with respect to a given coordinate system, a fundamental problem of
analytical dynamics [Battin, 1987, p. 79]. This chapter defines the coordinate frames
of interest and summarizes the representa@ions of the attitude used throughout the
remainder of this dissertation. The fundamentals of spacecraft attitude determination
are summarized for finding discrete point solutions based on attitude measurements.
Integrated attitude estimation using Kalman filtering is then discussed as an extension
of the point solution techniques. The Kalman filter approach, which uses gyro
measurements combined with one or more other sensors, forms the foundation for
the research in this dissertation. Finally, the attitude simulation methodology which
provides the test bed for the attitude estimation algorithms developed in subsequent

chapters is discussed.

2.1 Attitude Determination Preliminaries

Spacecraft attitude determination is an expression of the orientation of a body

in terms of some frame of reference. The particular reference frames and the
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representations used to express their relative orientations are defined for use in the

remainder of this dissertation.

Coordinate Frames

The principal coordinate frames for this study of spacecraft attitude
determination are the inertial frame, the orbit local frame, and the body fixed frame.
The observable attitude quantities measured by the sensors on JAWSAT are related
to the coordinate transformation from inertial to body or from orbit local to body.

These reference frames are depicted in Fig. 2.1.

INERTIAL ORBIT LOCAL BODY
A . A
K 1
spin axis zenith
Nl yaw
pitch
K, k [
roll orbit normal o
J=Kx1I j=kxi
velocity

Fig. 2.1. Inertial, Orbit Local, and Body Fixed Reference Frames
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The inertial frame (also called “Earth-centered inertial” or “geocentric
inertial” coordinates) is defined in terms of the axis of rotation of the Earth [Wertz,
1978]. The center of the coordinate frame is the center of the Earth, the inertial K
axis is aligned with the north celestial pole, and the inertial I axis lies in the plane of
the celestial equator and is aligned with the intersection of the equatorial and ecliptic
planes known as the first point of Aries. The inertial J axis forms a right-handed,
orthonormal basis vector set. (This coordinate frame is not absolutely inertial, due to

the motion of the Earth and luni-solar perturbations.)

The orbit local frame is defined in terms of the plane of the spacecraft orbit.
The orbit local frame has its I axis aligned with the zenith (the radial from the center
of the Earth to the spacecraft), the K axis is aligned with the orbit normal, and the J
axis forms an orthogonal set. (For a circular orbit, J corresponds to the velocity
direction.) The body frame axes coincide with the principal axes of the satellite, and
are nominally aligned with the orbit local frames for an Earth-pointing spacecraft.
The attitude Euler angles are defined as rotations of the body with respect to the
orbit local frame. Yaw, roll, and pitch are defined as rotations about the I, J, and K

axes, respectively.
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Attitude Representations

There are no standard definitions for Euler angle representations of spacecraft
attitude [Wertz, 1978]. The convention shown in Fig. 2.1, which has been used in
previous work on spacecraft attitude estimation [e.g., Axelrad et al., 1993], will be
used to define pitch, roll, and yaw rotations. This representation of the direction
cosine matrix will be used primarily for ease of interpreting results. Attitude

computations will be made using quaternions.

A quaternion is a four-parameter representation of the attitude that is free
from singularities (unlike Euler angle representations). For a rigid body rotation

about an arbitrary unit vector n, through an angle 6, the quaternion is defined as

g=[a, 4. 4 4.] where g=[q, ¢, g¢,] =sin(6/2)d and g, =cos(/2) .

The four parameters of the attitude quaternion satisfy the constraint that the
sum of their squares is unity. (Note that in general mathematical terms a quaternion
is a four dimensional vector with arbitrary norm. The subset of quaternions that have
unit norm is more precisely called a column vector of Euler-Rodrigues parameters as
noted by Shuster [1993]. With this distinction in mind, the general practice in
spacecraft attitude determination of referring to this quantity as the quaternion of

rotation will be followed [e.g., Shuster and Natanson, 1993; Wertz, 1978].)
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The direction cosine rotation matrix can be expressed in terms of the

quatemion components as

@' -2 -0 +a” 209, +9.95) 2(9195 — 949> )
A@)=| 2(9.91-99;) -9"+a°-q5 +q.° 2(9,95 +9,9,)
2(‘13‘11 + Q4(I2) 2(‘13‘12 - Q4CI1) _Q12 - %2 + Q32 + Q42
2.1)

Composition rules for combining quaternions are summarized in Shuster [1993] and

Lefferts et al. [1982].

Attitude sensors on JAWSAT will consist of a Trimble Vector GPS receiver,
gyroscopes, and a sun sensor assembly. Basic operation of these sensors is described
in later chapters. The general problem of converting individual sensor measurements

into attitude solutions is discussed in the next section.

2.2 Spacecraft Attitude Determination

Attitude determination methods based on vector observations of the attitude
rely on forming solutions to Wahba’s loss function [Wahba, 1965]. These methods
involve finding attitude solutions based solely on measurements characterized by unit
vector directions with no a priori knowledge of the attitude. Wahba’s loss function

describes a least-squares estimate of the attitude matrix and is written as
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L(A)=}% iai|bi — Ar| (2.2)
i=1

where T, is the unit vector representation of the direction to a measured object in a
reference frame, b; is the unit vector representation of the direction in the spacecraft
body frame, a; are positive weights associated with the measurements, n is the

number of measurements, and A is the attitude matrix relating the reference and body

frames.

Early approaches to minimizing Wahba’s loss function focused on finding the
independent elements of the A matrix directly [e.g., Wahba et al., 1966]. The
problem was later recast in terms of a cost function of the attitude quaternion, which
has fewer parameters than the full attitude matrix. The attitude can be found from an
eigenvalue equation for the quaternion [see Wertz, 1978]. A computationally
efficient solution to this eigenvalue equation, the so-called QUEST (quaternion
estimation) algorithm, was developed by Shuster and Oh [1981]. This widely used
algorithm avoids computation of the eigenvectors by converting the eigenvalue
equation into an algebraic equation in the attitude parameters. Despite its great
speed, the QUEST algorithm suffers a singularity for attitude rotations near 180
degrees. A more complete review of attitude estimation methods beginning with the
earliest solutions to Wahba’s problem through the development of the QUEST

algorithm can be found in Shuster [1983]. Bar-Itzhack and collaborators introduced
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alternative iterative algorithms for directly estimating the direction cosine matrix
[Bar-Itzhack and Reiner, 1984], the quaternion [Bar-Itzhack and Oshman, 1985],
and the Euler angles [Bar-Itzhack and Idan, 1987]. These algorithms did not come

into wide use due to the superior speed of the QUEST algorithm.

A computationally efficient solution to the attitude point solution based on
the singular value decomposition was developed by Markley [1988]. Like the
QUEST algorithm, the SVD algorithm does not require iteration, but it is not as fast
as QUEST. However, the eigenvalues and eigenvectors are available for analysis. A
new algorithm that computes the attitude matrix directly and rivals the QUEST
algorithm in speed was discovered by Markley [1993]. This so-called fast optimal
attitude matrix (FOAM) algorithm has the advantage that there is no singularity for
rotations near 180 degrees. Note that the GPS attitude determination problem can
be stated in terms of the Wahba loss function [Cohen, 1992; Cohen, Cobb, and
Parkinson, 1992], making high output rates for GPS attitude solutions possible for

high dynamic applications.

Unfortunately, attitude point solution methods do not generally allow for the
combination of attitude measurements from multiple sensors or sensors characterized
by bias parameters that also need to be estimated. Off-line batch estimation
algorithms for simultaneously estimating attitude and sensor biases and

misalignments have been developed [e.g., Markley, 1991 and 1989; Shuster, 1989].
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Sequential estimation techniques based on Kalman filtering are used for on-line

)
|
|
|
estimation of attitude and sensor correction parameters.
|
\
|
|

2.3 Kalman Filtering for Spacecraft Attitude Estimation

The Kalman filter [see e.g., Maybeck, 1979] provides a least squares estimate

of the state and error covariance of a linear system. For nonlinear system such as

Lefferts et al., 1982]. The extended Kalman filter linearizes state updates about the

|
|
|
\
i
|
|
\
|
quaternion attitude states, the extended Kalman filter is frequently used [e.g.,
current best estimate of the state. Thus, rather than estimating the total state, only an

estimate of the state correction is required. The dynamic model for the state error

correction, Ax, can be described by:

g;Ax = FAx+ Gw (2.3)

with observations of the state given by
i z=Hx+v (2.4)

where x is the state vector, F is the system dynamics matrix, G is the noise

distribution matrix, z is the observation vector, H is the observation matrix, and w
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and v are zero mean Gaussian driving noise vectors with spectral density matrices Q

and R, respectively.

The Kalman filter has been developed to determine the best estimate of the
state x using the measurements z. For a discrete-time system, the state propagation

can be described by the state transition relation

2, =0 +T,w, (2.5)

where @ is the state transition matrix, I" is the discrete time noise distribution matrix,

[ 3R44

and k is the time index. The superscript indicates a quantity prior to a
measurement update; superscript “+” indicates a quantity after a measurement update

has been incorporated. The state error covariance matrix, P, is propagated according

to

P, =®P ®" +Q, (2.6)

where Q, is the discretized process noise covariance.

The optimal measurement update for the state error correction vector in the

extended Kalman filter is given by
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A% =K(z— HE") 2.7)

P*=(I-KH)P (I-KH)" +KRK" . (2.8)

where the Kalman gain, X, is given by

K=P H'(HP'H +R)’ (2.9)

Additional information on Kalman filtering can be found in Brown and Hwang

[1992] and Maybeck [1979].

Early applications of Kalman filtering for spacecraft attitude determination
used Euler angle formulations for the attitﬁde states [Sorenson et al., 1979;
Farrenkopf, 1978; Farrell, 1970]. Euler angle Kalman filters for spacecraft attitude
estimation are still frequently used in simulation studies where singularities can be
avoided [e.g., Sullivan, 1995; Kudva and Throckmorton, 1994]. A quaternion filter
for spacecraft attitude estimation was developed by Lefferts et al. [1982]. Their
approach uses gyro measurements in the state propagation step and other sensors to
perform the measurement update. This use of the gyro measurements to form the
dynamic model directly has become a standard practice in spacecraft attitude

determination.




19

An extension of the measurement model introduced by Lefferts et al. [1982]
was introduced by Shuster [1990]. In this paper the measurement model is well
suited to the case of multiple non-collinear vector observations (based on the
QUEST algorithm) that are available at each measurement epoch (as in the case of a
CCD star camera that has several stars within its field of view). A comparison of the
effects of the two different measurement models was performed by Sedlak and Chu
[1993]. They used gyro and star tracker data from the Extreme Ultraviolet Explorer
(EUVE) satellite and found essentially no differences in performance between the
two filter types. Since no significant difference was found between the two methods,
the filter algorithm of Lefferts et al. [1982] is used exclusively as the basis for this

research. Details of the algorithm will be discussed in Chapter 3.

2.4 Attitude Estimation Simulation

Computer simulation has been called the third paradigm of science, joining
the centuries-old paradigms of theory and experiment. The methodology for
evaluating attitude estimation algorithms in this dissertation will be a computer

simulation developed in MATLAB.
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The simulation is composed of three primary sections as shown in Fig. 2.2: a
truth model of controlled attitude dynamics, measurement models of the attitude
sensors, and algorithms for spacecraft attitude determination. The truth models
generate the simulated dynamics of the satellite based on the anticipated performance
of the attitude control system. The spacecraft is modeled as nadir-pointing and

three-axis stabilized within the performance specifications of the controller.

TRUTH True :
True Orbit
MODEL Angular » Aditude [P Model/Sun
Velocity Angle
MEASUREMENT Gyro GPS Sun Sensor
MODELS Measurements Measurements Measurements

ALGORITHMS Attitude

Estimation
Algorithm

Fig. 2.2. Simulation Data Flow.

The measurement models for the attitude sensors have been developed so
that GPS attitude data can be incorporated to make the simulations as realistic as
possible. GPS attitude errors are taken from static ground tests and orbital flight
data and superimposed on the dynamics generated by the truth model. This method—

using actual measurement errors to contaminate the “perfect” measurements from the




21

truth model-has been used extensively in the development of filters for navigation

systems [e.g., Maybeck, 1979].

Measurement models for gyros and digital sun sensors are simulated using
analytical models based on their expected performance. Details of these analytical
models will be addressed in subsequent chapters. As with the GPS measurements,
ground test and flight test data can be substituted for the simulated data when it

becomes available.

The ultimate aim of the simulation is the evaluation of spacecraft attitude
estimation algorithms. The attitude determination simulation provides the test bed
for analyzing algorithms. The development and comparison of estimation algorithms
for integrated GPS attitude determination systems provides the focus for the

remainder of this dissertation.




-

Chapter 3:
ATTITUDE DETERMINATION

USING GPS AND GYROS

The Global Positioning System (GPS) has the capability to provide position,
velocity, attitude, and timing information to a satellite in low Earth orbit. This
combination of many functions in one instrument is attractive for small satellites,
where size, power, and cost are limited. A recent report by the National Research
Council advocates incorporation of GPS into small satellite designs for orbit and
attitude determination [NRC, 1994]. The objective of this chapter is to develop
estimation algorithms that integrate GPS based attitude with on-board gyros. A
demonstration vehicle for this design is JAWSAT, the Joint Air Force Academy -

Weber State University Satellite.

This chapter describes ground testing of a GPS attitude receiver using a small
satellite mock-up as well as on-orbit results obtained from the U.S. Air Force
RADCAL satellite. These data sets are used to test the algorithms developed later in
this chapter. Error sources for gyros and simulated gyro performance are discussed.
An extended Kalman filter algorithm for spacecraft attitude estimation using GPS
and gyros is presented. An improved estimation algorithm that accounts for the time

correlated nature of the GPS attitude estimation errors due to multipath is also
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introduced. Finally, simulation results of the two algorithms are presented and

compared.

3.1 GPS Based Attitude Determination

Attitude determination using differential carrier phase measurements from a
satellite radio signal was first demonstrated more than twenty years ago using the
U.S. Navy TRANSIT system to measure the heading of large ships [Albertine,
1974]. Although limited by several factors inherent in the TRANSIT system, this
study touched on many of the critical issues that have been addressed in current GPS
based attitude determination systems such as antenna baseline estimation, integer
ambiguity resolution, accurate measurement of differential carrier phase, and
multipath rejection. With the advent of GPS, accurate satellite based attitude
determination is now possible for aerospace applications. Several studies helped
advance the required techniques needed to extract attitude information from L-band
differential phase measurements made using multiple antennas [e.g., Lu, 1994; Lu et
al., 1993; Bass et al., 1992; Brown, 1992; Schwarz et al., 1992; Van Graas and
Braasch, 1992; Satz et al., 1991; Brown and Ward, 1990; Rath and Ward, 1989].
One successful approach has been implemented in the Trimble Vector receiver

described as by Cohen [1992].
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Trimble Vector Receiver

The Trimble Vector is a six-channel, four-antenna, C/A code receiver that is
primarily used for aircraft applications, but a space version of the software has also
been developed for use in low Earth orbit. The receiver measures 127 mm x 241
mm X 56 mm, weighs 1.42 kg, and draws 4 W at 9-18 Volts DC. The receiver is
connected to four microstrip patch antennas with 50 Q coaxial cable. The antennas
measure 96 mm X 102 mm X 13 mm and weigh 0.19 kg each. The antennas will be
mounted on the extreme corners of the zenith face of the satellite. The receiver has
an RS-422 port for commands and data output at a rate of 38.4 kbaud, and attitude
solutions are available at a nominal rate of 2 Hz [Trimble, 1994]. The Vector
receiver observes the differential phase of L1 carrier signals received at two or more

antennas.

The principal observable for GPS attitude determination is the Doppler
shifted carrier phase difference between a master antenna and one or more slave
antennas. Figure 3.1 shows the incident carrier wave received by a single master and
slave antenna pair. The difference in the received phase, Ad, between the master and
the slave is the quantity actually measured. The range difference between the master
and slave is required to form an attitude solution. The relation between phase

difference, A9, and range difference, Ar, (both expressed in cycles) is as follows,
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Ar=Ad+k—-B+v (3.1

~ where k is the integer number of carrier cycles in the differential phase, B is the
constant fractional cycle hardware bias between the two antennas, and v is the

measurement error due to receiver noise and multipath.

TO SATELLITE

7
Ar

M b S

Fig. 3.1. GPS Differential Phase Geometry.

For multiple baselines (i=1,...,n) and multiple GPS satellites in view

(j=1,...,m), the differential range measurements can be expressed as

Ary = A, +k, =B, +v, (3.2)

The range differences for each baseline-satellite pair are just the projections

of the baseline vectors directed from the master to each of the slaves, b ;» onto the
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user line of sight vectors to the GPS satellites,e;. This gives the range difference

measurement model as

Ar; =b; ee; (3.3)

If the baseline vector components are known in a vehicle body fixed frame, denoted
by superscript B, and the line of sight vector components are known in an inertial or

navigation frame, denoted by superscript N, the range differences can be represented

(3.4)

where the attitude matrix, C", rotates the line of sight vector from the navigation

frame to the body fixed frame.

Several methods exist for computing the attitude matrix from a set of range
difference measurements [e.g., Shuster and Oh, 1981; Shuster, 1989; Cohen er al.,
1992; Markley, 1993]. The Trimble Vector receiver implements a least squares

solution that minimizes the following cost function,
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I(*e)= iwa[Ng—(biB)T(”é”ef )] (3.5)

where w;; is a weighting factor for each measurement which may be based on factors

such as baseline geometry or signal level. An iterative approach is used in the
receiver software to solve for the best estimate of the attitude matrix in equation 3.5.
A fast, non-iterative solution method is also available in the receiver software that is
based on Markley’s [1993] solution to Wahba’s problem. However, this requires

that the four antennas be noncoplanar. See Cohen [1992] for details.

When forming attitude solutions using GPS differential phase measurements,
several quantities are assumed to be known. These quantities are the integer

ambiguities, k; , the antenna baseline vectors, b;, and the hardware biases, B,. In

fact, these parameters are computed by the receiver prior to generating attitude
solutions. The baselines and hardware biases are estimated off-line during a ground
survey lasting eight hours or more. The long duration is required so that satellite
motion overhead can be used to resolve integer ambiguities and estimate the constant
baseline and bias values for a given hardware configuration. The integer ambiguity
resolution performed during the off-line survey is not valid for later operation, so

only the b, and B, values are stored for later use. If it is not possible to perform an

antenna baseline survey on the fully integrated spacecraft prior to launch, the antenna
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baselines could be estimated on-orbit using the bootstrap algorithm developed by

Ward and Axelrad [1995]. This method is not implemented in the receiver software.

Determining the integer ambiguities, k;, for attitude determination requires

an initialization step. Assuming the baselines and hardware biases are known, the
integer ambiguities can be resolved by moving the structure through a large angle (on
the order of 90 deg), or by tracking the motion of the GPS satellites overhead for
orbital applications [Cohen, 1992]. Accumulating time-differenced phase
measurements and constraining the antenna baseline lengths to their known values
allows for a batch estimation process to resolve the integers. This initialization batch
process typically takes less than a minute to accumulate the time-differenced data and
resolve the integers. -Once the integers are known, they are continually updated

using the incoming phase measurements.

The Vector receiver outputs attitude solutions based on the least squares
algorithm described above. Raw differential phase measurements are also available
as outputs from the Vector receiver, and these could be used for analysis of attitude
solutions off-line. The Vector attitude solution is treated as the observation in the

JAWSAT attitude determination system.

The Vector receiver hardware has not been formally space qualified, but

receiver software designed for use on orbit has been developed. Small satellite




designs frequently use terrestrial hardware in the interest of keeping costs low.

Certain electrical components, such as electrolytic capacitors, need to be avoided and
additional shielding of terrestrial equipment may be needed to ruggedize hardware

for use in space [Reeves, 1994].

Spacecraft Attitude Determination Using GPS

On-orbit testing of the Trimble Quadrex attitude receiver, a precursor to the
Trimble Vector to be used for JAWSAT, has been described by Lightsey er al.
[1994, 1993] and Axelrad and Ward [1994]. The Quadrex receiver was implemented
on the Air Force RADCAL satellite as a separate experiment which is not integrated
with the spacecraft attitude determination and control system. The output of the
Trimble Quadrex receiver on RADCAL is raw differential phase measurements, not
processed attitude solutions as will be the case for the Vector receiver. Thus, GPS
based attitude estimation for RADCAL requires ground processing of the raw

measurements to form attitude solutions.

The first known use of GPS attitude determination in a closed loop satellite
attitude control system will be the NASA Spartan mission [Bauer et al., 1994]. This
mission is a free-flying Space Shuttle experiment that will use the Vector receiver.

Launch is planned in 1995.
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GPS Attitude Errors

Frequently, the dominant error source in GPS attitude determination is
multipath contamination of the differential carrier phase measurements. Mitigation
of multipath errors in these measurements has been investigated by Georgiadou and
Kleusberg [1988], Cohen and Parkinson [1991], and Axelrad, Comp, and MacDoran
[1994]. The latter approach uses receiver reported signal to noise ratios to
characterize multipath errors in the phase residuals. This research is expected to
bring about significant improvements in GPS attitude receiver performance in the
presence of multipath. However, the algorithms being developed will require
substantial modification of receiver software that is not anticipated for the JAWSAT
receiver. Later in this chapter a multipath mitigation scheme is proposed for GPS

attitude solutions through integration of gyroscope measurements.

GPS Attitude Test Data

The GPS attitude measurements used in computer simulations come from

two sources: ground tests and RADCAL orbit data.
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Ground based performance testing of the Vector receiver has been reported
by Gomez et al. [1995] and Axelrad and Chesley [1993]. Further ground based
testing was conducted at the University of Colorado using a JAWSAT test structure.
The test structure is an aluminum box with a plate for mounting the four GPS
antennas. The plate measures 66 cm X 53 cm, with the four GPS patch antennas
mounted at the extreme corners. The JAWSAT mock up with GPS antennas and
Vector receiver is shown in Fig. 3.2 on the roof of the Engineering Center at the

University of Colorado.

Fig. 3.2. GPS Antenna Test Structure.

Sample results from a static test run are shown in Fig. 3.3. No filtering of the
receiver output or integration with measurements from other sensors was included in

this test. Note that for the short baselines used, the attitude error is approximately
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0.9 degrees, 3-0. Also note the apparent time correlation in the attitude solutions

indicative of multipath errors affecting the raw signal.
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Fig. 3.3. Sample GPS Attitude Output. Data was collected on October 11, 1994,
using a Trimble Vector attitude receiver and the JAWSAT mock up structure.

In this case the attitude was known to be fixed, so any variations in the

results were assumed to be measurement errors. The attitude error characteristics

shown in Fig. 3.3 are used in a simulation of an integrated GPS attitude

determination system described later in this dissertation.
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Flight test results from the Quadrex receiver aboard RADCAL were also
used. The RADCAL satellite is a gravity-gradient stabilized satellite with GPS
antennas arranged in a square so that the baseline lengths are 62 cm for the two
shorter legs and 78 cm along the diégonal. These baseline lengths are very similar to
the antenna baseline lengths that will be used on JAWSAT. A key difference
between RADCAL and JAWSAT is the existence of the gravity gradient boom that
extends 6 m from the zenith face of the satellite. This boom creates more severe

multipath characteristics than would be expected on JAWSAT.

In order to use the on-orbit results from RADCAL, filtered attitude solutions
were subtracted from GPS point solutions [Ward and Axelrad, 1995]. This was
required since there is no “truth reference” sensor for the attitude of RADCAL.
Therefore, the accuracy of the attitude solutions can only be characterized in
comparison with filtered solutions using the same data. Unfortunately, the filtered
solutions may contain errors due to any mismodeled dynamics of the spacecraft. In
order to reduce the modeling errors in the differenced data, the data was high-pass
filtered using an eighth-vorder Butterworth filter. This filter attenuated frequency
contributions with periods longer than 20 minutes which are likely to be due to

mismodeled dynamics. A sample of this GPS attitude error data is shown in Fig. 3.4.
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Fig. 3.4. Sample GPS Attitude Output from RADCAL. Data was collected on
RADCAL day 107 using a Trimble Quadrex attitude receiver. Plot shows GPS point
solutions minus filtered solutions with low frequency errors removed.

Note that the RADCAL results generally exhibit larger errors than the ground
test data. There are several reasons for the poor quality of the RADCAL
measurements. These include the fact that the four GPS antennas on RADCAL are
canted away from zenith by 17 deg and no antenna ground planes were used. In
addition, the gravity gradient boom and UHF antennas protruding from the zenith
face of the spacecraft contribute to a severe multipath environment. Finally, poor
satellite geometry and poor measurement quality cause large attitude errors such as

the outliers at approximately 1600 sec in Fig. 3.4. Nonetheless, the RADCAL data
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will be used as a baseline case in the remainder of this dissertation for two reasons:
first, the poor quality of the GPS data from RADCAL is likely to represent a worst
case for JAWSAT; and second, the RADCAL data is the only available on-orbit GPS

attitude data, so it offers the most realistic simulation data available.

The time correlation in the multipath errors can be modeled as a first order
Markov process. Figure 3.5 compares the autocorrelation functions of an ideal
Markov process with multipath data from ground tests and RADCAL. The
autocorrelation function for the ideal Markov model is from Gelb [1974]. The

computed autocorrelation functions have been normalized to have unit magnitude.
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Fig. 3.5. Comparison of autocorrelation functions of Markov process and measured
GPS multipath.

The dominant sharp peaks in the autocorrelation plots indicate that a Markov
model for multipath captures most of the effect. The experimental GPS attitude data
from RADCAL and ground tests exhibit side lobes which suggest the presence of
smaller periodic effects of unknown frequency in addition to the time-correlation
modeled by the Markov process. If the frequency components present in the
multipath were known, these effects could be added to the model. The measurement
differencing algorithm developed in Section 3.4 uses a Markov model for multipath

effects.
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3.2 Gyro Attitude Determination

The use of gyroscopes for spacecraft attitude determination and inertial
navigation systems is well established [Wertz, 1978]. Generally, gyroscopes rely on
the properties of a rotating medium (usually a spinning mass or counter-rotating
beams of light) to sense angular velocity. Current navigation grade gyroscopes are
very accurate, but their long term performance is limited by how well their random
drift can be compensated. For a general discussion of gyroscope properties and drift
limitations, see Litton [1994], Siouris [1993], Pandit and Zhang [1986], and Wertz

[1978], for example.

The gyros selected for JAWSAT will be determined by the cost and
performance characteristics. In this dissertation, fiber optic gyros and
micromechanical gyros based on the piezoelectric effect will be considered. The

basic operation and typical performance of these gyros is described in this section.

Fiber Optic Gyros

Fiber Optic Gyros are attitude sensors that measure changes in transit times
of counter rotating beams of light in a closed optical path. FOGs were developed
from research on interferometry and ring laser gyros. FOG technology is considered

very promising as an accurate, low-cost attitude sensor since many of the
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components (such as optical fiber and superluminescent diodes) are already produced
in relatively large quantities for telecommunications systems [Mark et al., 1991;
Nuttall, 1990]. The Clementine spacecraft launched in January 1994 included FOGs

in its attitude sensor suite [NRC, 1994].

FOGs operate by splitting a light source into two beams. One rotates
clockwise through a coil of optical fiber, the other beam rotates counterclockwise.
When the beams are recombined after traveling the same optical path in opposite
directions, the interference pattern can be used to measure the rotation rate. These

sensors are sometimes called interferometric fiber optic gyros (IFOG) for this reason.

The counter rotating light beams can be used to sense rotation since the light
(photons) moving in opposite directions around the ring will travel different path
lengths if the ring is rotating. This effect is predicted by relativity theory and was
first studied by Sagnac circa 1919 [Post, 1967; Arditty and Lefevre, 1981]. The
basic principle of FOG rotation sensing is shown in Fig. 3.6. The phase shift as the
fiber coil rotates through the angle A8 is sensed by a photodetector. Practical
implementation issues for FOGs and additional theoretical details are discussed in

Lefévre [1993], Udd [1991], Lefévre et al. [1984].
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Fig. 3.6. Standing Wave Interference Pattern in Fiber Optic Gyro.

Measuring these path differences in a practical way and expressing these
measurements in a usable form were the key challenges to using optical gyros as
precision angular velocity sensors. The primary error sources for FOGs are random
drifts in the angular rate bias. The angular rate bias is an offset between the FOG
measurement and the true angular velocity. These bias drifts arise due to
imperfections in the optical fiber that cause the clockwise and counter clockwise
beams to experience slightly nonreciprocal paths. The drift in the rate bias can be
characterized by random walk behavior. Environmental effects such as thermal and
magnetic disturbances also contribute to the random bias drift [Siouris, 1993].
Significant improvements have been made in calibrating and compensating for these

bias drifts, and high accuracy FOGs are available with drift rates on the order of

5%107® rad/sec.
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Micromechanical Gyros

Micromechanical gyros are miniature tuning fork sensors based on the
piezoelectric effect. These gyros are currently being developed primarily for
automotive and military applicaﬁons because of their low cost, relative ease of
construction, and modest performance [Weinberg et al., 1994; Blanco and Geen,
1993]. However, these attributes could also be exploited by small satellite programs
and result in a “breakthrough in size, weight, and cost” for spacecraft applications

INRC, 1994, p. 59].

Micromechanical gyros are being developed and tested using micromachining
processes developed by the integrated circuit industry. The gyros are fabricated from
thin wafers of silicon or quartz typically about 1 mm’. Integrated electronics can be
included so that an entire gyro sensor can be included on one chip. Several
development efforts are currently being conducted [e.g., Weinberg et al.; 1994,

1993; Blanco and Geen, 1993; Maseeh, 1993; and Sitomer et al., 1993].

Tuning fork gyros operate as follows. Two well balanced micromechanical
accelerometers are dithered out of phase. If the accelerometers are both mounted
along one axis and the dither is excited along a second perpendicular axis, then the
difference signal between the two accelerometers contains angular rate information

for the third orthogonal axis [Blanco and Geen, 1993]. Signals due to linear
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acceleration along the gyro axis cancel because of the out-of-phase dithering. For
micromechanical gyros based on this principle, a comb of tuning-fork accelerometers

is bonded to a glass substrate [Weinberg et al., 1993].

Single silicon crystal gyros made by microfabrication technologies have been
tested in laboratory environments [Weinberg et al., 1994]. Their results indicate
promising results for low cost spacecraft applications. In particular, they report quite
stable gyro biases under ambient conditions and 0.8 deg/(hr)* angle random walk.
These performance parameters will be used to generate simulated measurements for

low quality gyros.

Gyro Measurement Model
Gyro model parameters have been adapted from Siouris [1993] and Lefferts
et al. [1982] for use in the attitude estimation simulation. The gyro measurement

model is described by

u=w+n, +b (3.6)

where u is the measured angular rate output, ® is the true angular rate, n, is the

random drift rate noise, and b is the drift rate bias. This gyro model has been used
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extensively in spacecraft attitude determination studies [e.g., Sedlak and Chu, 1993;

Markley et al., 1993; Fisher et al., 1989]. The noise term is described by

3.7)

Note that since attitude is the integral of the angular velocity, the random errors in

angular rate due to n, will result in random walk errors in the attitude. Thus, n, is

often referred to as angle random walk noise.

The drift rate bias, b, is not constant, but varies slowly in a manner that can

be characterized by a random walk model

b=n, (3.8)

where n, is the random walk in drift rate with noise described by

E[n,]=0

(3.9
E|n, '”2T]= 0,=0,"I5,
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Inertial Quality Gyro Simulation

The gyros modeled as the baseline design for this dissertation are medium
grade inertial instruments, typical of the FOGs projected for use on JAWSAT [Page
and Sugarbaker, 1995; Sullivan, 1995; Sedlak and Chu, 1993; Mathews, 1990]. The

specific noise strengths used are

o2 =10"2

(sec)” (3.10)
c,”=10" rady

(sec)™

Simulated gyro bias drift due to the n, term is shown in Fig. 3.7 for the case of no

dynamics. Figure 3.7 shows about 6.5 hours of bias drift in order to show an
appreciable effect. Fig. 3.8 shows the gyro output for the first 40 minutes of the

same simulation run. Note that the angular rate noise due to the », term dominates

the output errors in Fig. 3.8; thus, angular rate noise is the most serious error source
for time frames of interest for spacecraft attitude estimation [Markley, 1993].
However, accurate estimation of the gyro bias is also critical, since the bias drift
depicted in Fig. 3.7 will accumulate over longer time periods. The general error
characteristics described in this section will be modified to match the flight hardware

when that data becomes available.
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Fig. 3.7. Simulated Bias Random Walk. Graphs show changes in drift rate bias for
gyros aligned with each of the three body axes. Angular velocity input is zero for
each axis. Mean offset, typically on the order of 10 deg/hr, has been removed from
the plots.
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Fig. 3.8. Simulated Angular Rate Measurements. Graphs show measurement noise
characteristics for gyros aligned with each of the three body axes. Angular velocity
input is zero for each axis.

Low Quality Gyro Simulation

Since the final gyro hardware for the JAWSAT design has not been
established, low quality gyros are also considered as a comparison case to test the
performance of the attitude estimation algorithms. These low quality gyros have

performance specifications typical of low quality FOGs or micromechanical gyros
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that may ultimately be used on board JAWSAT. The noise strengths used to

simulate low quality gyros are [Sullivan, 1995; Weinberg, et al., 1994]

G2 =5.4><10-8—53‘-14y—
(sec)”™
d (3.11)
6,7 =10"" 1=
? (sec)”

Figures 3.9 and 3.10 show the gyro bias drift and output noise for the low quality
gyros. Figure 3.9 shows 6.5 hours of bias drift, and Fig. 3.10 shows 40 minutes of

gyro angular rate output.
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Fig. 3.9. Simulated Bias Random Walk. Graphs show changes in drift rate bias for
low quality gyros aligned with each of the three body axes. Angular velocity input
is zero for each axis. Mean offset, typically on the order of 100 deg/hr, has been
removed from the plots.
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Fig. 3.10. Simulated Angular Rate Measurements. Graphs show measurement
noise characteristics for low quality gyros aligned with each of the three body axes.
Angular velocity input is zero for each axis.

3.3 Extended Kalman Filter Algorithm

An extended Kalman filter algorithm to estimate spacecraft attitude and gyro
bias parameters using FOG and GPS measurements was developed. The full state

vector has seven dimensions: four states for the attitude quaternion,

7=la, ¢ @ a ]T, and three gyro bias states, b=[b, b, b3]T, (one for each
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axis). The Kalman filter implementation uses only three of the quaternion states
since inclusion of all four gives rise to a singularity in the covariance matrix time
update; therefore, a six-state formulation is used following Lefferts, Markley, and
Shuster [1982]. The fourth quaternion state can be computed at any time from the
other three to give the full seven dimensional state. The time propagation and

measurement update processes are depicted in Fig. 3.11.

Time propagation of the quaternion state estimate and the covariance matrix
is performed using FOG angular rate measurements. The GPS quaternion
measurements are then compared with the propagated state vector estimate to form
the measurement residual at each state update epoch. The extended Kalman filter
then forms a quaternion state correction term from which a new estimate of the total
quaternion of rotation can be determined by quaternion composition. The gyro bias
terms are accumulated in the usual way by adding the incremental update to the
reference trajectory. Details are in Lefferts et al. [1982], and summarized below.
Additional information on general Kalman filter theory can be found in Maybeck

[1979] and Gelb [1974].
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Fig. 3.11. Extended Kalman Filter Algorithm

The dynamic model for the full state X is given by

d~ NS

2 = Qg

d (3.12)

—b=0

dr

where

.|

xX=|a 3.13
5 (3.13)

where the matrix Q* is given by
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0 o, -0, 0
-®, 0 &, @

Q<= . . b (3.14)
0w, -0, 0 o,

-0, -0, —-®, 0
and the angular velocity estimate @ is obtained from
b=w_, b (3.15)
where ®

meas

is the raw (biased) gyro measurement vector and b is the best estimate

of the gyro bias vector. Note that the dynamic model for the controlled spacecraft

motion is derived directly from the gyro measurements.

The time propagation for the total attitude quaternion 5‘ from time k-1 to k is

obtained from the gyro angular velocity measurements and the attitude kinematics
described by

(3.16)

The covariance propagation and measurement update equations are formulated in

terms of a six-dimensional state vector to avoid singularities following Lefferts er al

[1982]. The six-dimensional state vector is defined as
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¥= [&’] (3.17)

where 3q represents the three components of the small quaternion correction. Thus,

the four dimensional quaternion &g represents the rotation between the true state

and the estimated state, as defined by

- (3.18)

&
n
Q|
®
ESTH

where an overbar indicates a four-dimensional quaternion, a carat indicates an

estimated quantity and ® denotes quaternion composition.
Next the state equations are linearized about the reference trajectory provided

by the angular velocity, and formulate the extended Kalman filter for the state error

vector, noting that
o
Ax E[ q} (3.19)

The dynamic equations for the state error are then
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——tAf = FAX +Gw (3.20)

where
[ 0 &,() -0,0) -+ 0 0]
-d,() O ®,@) 0 -1 0
A A ~1
F(z,)= 6,(6) &) 00 0 (3.21)
0 0 0 O 0 O
0 0 0 0O 0 O
| 0 0 0 0 0 0
-11 0
G=[ 2 13x3 3x3] (3.22)
3x3 13x3
and w~ N(O,Qd).
The state error covariance matrix of dimension 6x6 is defined as [Fisher et al.
1989]

P=E[a%-A%"| (3.23)

where AX is defined in equation (3.19).

To propagate the state error covariance matrix P, the state transition matrix,

®, is computed as




54

D(k+ Nlk) = g ter) (3.24)

where N is the number of time propagation steps between measurement updates.

Then the time propagation for the covariance matrix is given by
B, =®PR'®"+Q,. (3.25)

Next a transformed measurement residual vector that relates the GPS measurement

does to the state vector correction AX =[dq Ab]T is defined.  First the

measurement residual is formed as

Az = Ag =qps "3— : (3.26)

This measurement residual is not a quaternion, but it is related to the state according

to equation (127) in Lefferts et al. [1982]
Qops =G +E(q) (3.27)

where
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‘}4 _éa éz

5G)=| 2 o h (3.28)
-4, 4 q4
_‘jl _62 _63

and the three independent quantities representing the small angle measurement error,

v, are described by

v~N(O,R,,;) . (3.29)

Then

Az= A7 =E(7)3q+E(g)v (3.30)

where the matrix E(c? ) accounts for the combination of quaternion components. A

filter using this form gives rise to a singularity in the gain equation. To avoid this

problem, the transformed measurement residual of dimension three is defined as

AE=5T(5)Az=Sq+v. (3.31)

Note that the transformed measurements consists of three quantities that retain all the

information contained in the original four-dimensional measurement residual. This
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formulation relies on the matrix E(c? ) . Dynamic equations utilizing the form of

A

E(é ) were first introduced by Sir Arthur Cayley {1843]. The many useful

A

properties of the matrix E(cj ) are reviewed by Shuster [1993] and Lefferts et al.

[1982].

The measurement observation matrix for the transformed measurement

residual is just

H=[I,, 0,]. (3.32)

The optimal updated state and covariance are then given by the Kalman filter

equations
K=P H'(HPH +R)" (3.33)
A% = K(A7) (3.34)
P*=(I-KH)P (I-KH)" +KRK" . (3.35)

The updated total state can be obtained as in Lefferts et al. [1982], using the

following relations
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(3.36)

(3.37)

(3.38)

(3.39)

GPS attitude errors are time-correlated as discussed in Section 3.1. A

technique for improved Kalman filtering in the presence of time correlated

measurement errors involves differencing successive measurements to “whiten” the

errors. This approach was first suggested by Bryson and Henrickson [1968], and

was discussed further by Bryson and Ho [1975]. Provided the time constant of the

measurement error correlation is large compared to the sampling frequency, the

errors in successive differenced measurements will not be correlated in time. The

disadvantage of this approach is that the measurement noise at each epoch is
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increased. However, measurement differencing is preferred over state vector
augmentation to account for the non-white measurement errors because increasing
the dimension of the state vector is inconvenient for real-time applications and, more
importantly, computations of the filter gains are typically ill-conditioned [Bryson and

Ho, 1975].

Measurement differencing requires a very good dynamic model or
measurements with relatively little high frequency noise to successfully overcome the
increased measurement noise introduced by the approach. In the present case, FOG
measurements provide the dynamic model very accurately for short time spans
relative to the gyro drift and angle random walk. The prediction equations for the
measurement differencing case are the same as those given by equations (3.16 -
3.25). The measurement update equations are modified from Bryson and Henrickson
[1968] to relate the transformed (three-dimensional) measurement residual to the
total state, as in the previous section. Transformed measurement residuals are used
to account for quaternion composition relations and prevent singularities in the
covariance update equations. The new model for the transformed measurement

residual is given as
AZ, = H[Sq] +€, (3.40)
k

where
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g, =We, +w, (3.41)

Y=t (3.42)

Note that €, is a first order Markov process described by the transition matrix ¥ . f3

is the inverse time constant of the Markov process that models the multipath errors,

At is the interval between GPS measurements, and w, is a Gaussian white noise
parameter with covariance Qdf. The measurement observation matrix, H, is as

defined in equation (3.32).

The pseudo measurement is defined to be the difference

Ck—l = AZ, —YAZ, . (3.43)

The pseudo measurement error covariance matrix is given by

R=HTQT'H” + Oy (3.44)

where Q. is the covariance of the gyro noise.




60

Note that the (pseudo) measurement and process noises are now correlated

according to the covariance matrix

C= E[weT]= QT HT.

Following Bryson and Ho [1975], a matrix D is defined to be

D=TCR™.

Then the Kalman filter measurement update equations become

K=P H'(HP HT+R)

B = (I_ KH, )Pk—l- (I— KH:)T
+KRK”

B = ((D - DH, )Pk-llk ((D - DH, )T
+Q, - DRD’

~

A%,y = K(C k—l)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)
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AXyy, = PAX,_, + D(C g — H A%y ) (3.51)

where
H =H®-YH. (3.52)

The notation k-11k is used to denote quantities computed at time step k-1 given a
GPS measurement at time k. This time lag of one update epoch is introduced by the
pseudo measurement which includes measurements at time k-/ and k. Equations
(3.49) and (3.51) propagate the covariance and state estimates to the current

measurement epoch.

3.5 Attitude Estimation Simulation

Three simulation configurations were performed to analyze the attitude
estimation algorithms developed in this chapter. The three simulations include
different combinations of GPS and gyro data. All three simulations include gyro
measurements taken once per second and GPS measurements are available every 12

seconds. The simulation parameters for the three runs are summarized in Table 3.1.
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Table 3.1. Simulation run parameters.

Simulation #1 Simulation #2 Simulation #3
GPS Data JAWSAT mock up RADCAL RADCAL
Gyro Quality High High Low
Initial Covariance P = 10—313x3 0, P = 10-313><3 05 P = 10_313x3 0ys
’ 035 10—-613)(3 ’ 03x3 107 I3 ’ 03><3 107 Ly
Process Noise Cov. | fomas, o, 1 o, 0, ! 0o1dO7A by Ou ’
(EKF) Q—l's{ 03x3 622 'laxa] Q_ 5|: OJxJ tyzz " l:xa] " 0])(3 ozz 'Ithd
Process Noise Cov. oML, O 1 6L, O, ! s, 0, 1
: 2= 2 2= 2 2=y .
(Meas. lef) Oy 0, Ly 1x3 G, Iy 3x3 [P Y
Meas. Noise Cov. | R=24e-5-I,rad’* | R=28¢—4-I,,rad’ | R=28e—4-1I,, rad
Multipath Time B =1/100sec B =1/100 sec B =1/100 sec

Constant

*where o, and o, are from eqn (3.10) and At is the gyro sampling interval
* where 6, and o, are from eqn (3.11) and At is the gyro sampling interval

The multipath time constant was kept the same for all simulation runs for the
basis of comparison. A reasonable choice for the multipath time constant in the
measurement differencing algorithm yields improved performance compared to the

basic Kalman filter algorithm, as will be discussed in Section 3.6.

Simulation number one includes GPS measurements taken from ground test
data using the Trimble Vector receiver and the JAWSAT test structure (see Fig. 3.3).
High quality gyro measurements are included in this simulation (see Figs. 3.7 and
3.8). Simulation number two uses RADCAL GPS data (see Fig. 3.4) and high

quality gyros. Finally, simulation three uses RADCAL GPS data with low quality

gyros.
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The attitude truth model for the simulated spacecraft was the same for all
three simulations. The true attitude used in the simulation runs in shown in Fig. 3.12.
The spacecraft was modeled as three-axis stabilized and Earth pointing within the
performance specifications of the attitude control system. Attitude control errors
were included in the simulation by adding an arbitrary oscillating component to the
attitude motion that is roughly at the limits of the expected controller performance.
This method has been used previously in spacecraft attitude estimation simulations

[e.g., Fisher et al., 1989].

Attitude Truth Data
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Fig. 3.12. Simulated True Spacecraft Dynamics.
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3.6 Simulation Results and Discussion

In this section simulation results from the extended Kalman filter and
measurement differencing algorithms discussed previously in this chapter are
compared. Simulation results are based on GPS measurements obtained from
ground testing with a mock up of the JAWSAT spacecraft and on-orbit results from
RADCAL. The effects of high and low quality gyros on the performance of these

algorithms is also considered.

Ground Test Results

The simulation parameters for run number one in Table 3.1 were used in an
attitude determination simulation with the true dynamics shown in Fig. 3.12. The
attitude truth data and the attitude estimates from the extended Kalman filter
algorithm are shown in Fig. 3.13. Attitude quaternion output has been converted to
yaw, roll, and pitch for easier interpretation. Subsequent results show estimation

errors only with true dynamics removed.
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True and Estimated Attitude Data
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Fig. 3.13. True and Estimated Attitude Data.

Figure 3.14 shows Kalman filter error plots for the attitude angles using the
extended Kalman filter algorithm and the simulation parameters for run number one
in Table 3.1. Note the stepwise nature of the plots that occurs at the GPS update
interval of every twelve seconds. Also note that the errors are time correlated due to
multipath errors in the GPS measurements. These time correlated errors will be

reduced using the measurement differencing algorithm.




66

Attitude Error
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Fig. 3.14. Kalman Filter Attitude Error Plot for GPS Ground Test Data.
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The errors in the gyro bias estimates using the standard Kalman filter and the
GPS ground test data are shown in Fig. 3.15. The time correlated measurement
noise in the GPS measurements also results in time correlated estimation errors in the

gyro bias states. Filter convergence at the beginning of each run has been eliminated

from the plots.
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-5 Gyro Bias Error
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Fig. 3.15. Kalman Filter Bias Error Plot for GPS Ground Test Data.
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In Figs. 3.16 and 3.17 the standard Kalman filter algorithm is compared to
the measurement differencing Kalman filter developed in Section 3.5. Figure 3.16
compares the attitude estimation errors for the two algorithms. Note that the
measurement differencing algorithm is affected less by the effects of the multipath
errors in the GPS measurements. Similar results for the gyro bias states are shown in
Fig. 3.17. Table 3.2 summarizes the computed error statistics for the sample runs

shown in Figs. 3.16 and 3.17.
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Attitude Errors: EKF and Measurement Differencing
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Fig. 3.16. Attitude Error Comparison for GPS Ground Test Data. Graphs show
attitude estimation error for the standard and measurement differencing Kalman

filter algorithms.
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T x10° Gyro Bias Errors: EKF and Measurement Differencing
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Fig. 3.17. Gyro Bias Error Comparison for GPS Ground Test Data. Graphs show
bias estimation error for the standard and measurement differencing Kalman filter
algorithms.

Table 3.2. Computed error statistics for Extended Kalman Filter and Measurement
Differencing Kalman Filter Algorithms using GPS Ground Test Data.

YAW ROLL PITCH

1o error 16 error 1o error

KALMAN FILTER 0.20deg | 0.19deg | 0.17 deg

MEAS. DIFFERENCING 0.10deg | 0.08 deg | 0.07 deg

One reason for the performance improvements using the measurement

differencing algorithm is the way non-white measurement errors are accommodated
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in the two approaches. In the standard EKF approach, artificially large process noise
is used to allow for the non-white distribution in the measurement errors. In the
measurement differencing algorithm, the process noise based on the gyro angle

random walk noise parameters is used.

The choice of the time constant for the dynamic model of the time correlated
errors given by equations (3.41) and (3.42) is necessary for the implementation of the
measurement differencing algorithm. The attitude estimation errors for a range of

time constants in the measurement differencing algorithm are shown in Fig. 3.18.
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Measurement Differencing Attitude Errors for Varying Time Constants
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Fig. 3.18. Attitude Estimation Errors Using Measurement Differencing Algorithm
with Different Time Constants. Time constant values for the simulations are B=100
sec”, B=1/100 sec”, B=1/250 sec”’, B=1/500 sec”, B=0 sec’’. The graph for =100

sec’! shows larger deviations from zero error. The smaller B values are grouped

together with smaller errors.

o

The error statistics for the data shown in Fig. 3.18 are compiled in Table 3.3.
Note that large B approaches the standard Kalman filter formulation. The graphs in
Fig. 3.18 and the variances in Table 3.3 show that the 8 values less than about 1/100
sec’ all result in similar performance. Also, the fact that the time constant may not
be known exactly does not limit the applicability of the measurement differencing
method. Only an approximate value of f3 is needed to provide significantly improved

error performance compared with the standard extended Kalman filter formulation.
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Attitude estimation results for the standard EKF and the measurement
differencing filter are shown in Figs. 3.19 and 3.20 using GPS measurements from

RADCAL and the simulation parameters for run two in Table 3.1.

Attitude Errors: EKF and Measurement Differencing
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Fig. 3.19. Attitude Error Comparison for RADCAL Test Data. Graphs show
attitude estimation error for the standard and measurement differencing Kalman
filter algorithms.
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S x107 Gyro Bias Errors: EKF and Measurement Differencing
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Fig. 3.20. Gyro Bias Error Comparison for RADCAL Test Data. Graphs show bias
estimation error for the standard and measurement differencing Kalman filter
algorithms.

As with the ground test GPS data, the measurement differencing approach
successfully reduces the effect of GPS errors due to multipath in the combined
GPS/FOG solution. Table 3.4 compares the computed error statistics for the filter

results using RADCAL data.
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Table 3.4. Computed error statistics for Extended Kalman Filter and Measurement
Differencing Kalman Filter Algorithms using RADCAL Test Data.

YAW ROLL | PITCH

loerror | loerror | lo error

KALMAN FILTER 1.27 deg | 1.01 deg | 0.65 deg
MEAS. DIFFERENCING 0.74 deg | 0.52deg | 0.24 deg

As with the ground test data, the measurement differencing algorithm reduces
the standard deviation of the attitude estimation errors by a factor of two for the
RADCAL GPS data. Also, extended periods where attitude errors have a non-zero
mean are greatly reduced with the measurement differencing approach as can be
identified in Fig. 3.19. This feature could prove important in a closed loop attitude
control system. Improved performance of measurement differencing approach is due
to the fact that the GPS errors can be approximated by a first-order Markov process
and that an accurate dynamic model of the vehicle motion is available from the FOG

measurements.

Comparison of Gyro Quality

One of the keys to the success of the measurement differencing is the

availability of an accurate dynamic model to correctly account for the time lag in the
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pseudo-measurement. For the spacecraft attitude determination system considered,
this dynamic model is derived directly from the gyro measurements. As the accuracy

of the gyro measurements decreases, so does the accuracy of the dynamic model.

High accuracy gyros were used for the simulation results using RADCAL
GPS measurements shown previously in Figs. 3.19 and 3.20. For comparison, low
quality gyros such as piezoelectric gyros were used for the simulation results shown
in Fig. 3.21. Note that neither algorithm clearly outperforms the other in this case.
These results suggest that for situations where only a poor dynamic model is
available, the measurement differencing algorithm may not provide any advantage

over the standard EKF.
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Attitude Errors: EKF and Measurement Differencing
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Fig. 3.21. Attitude Error Comparison Using Low Quality Gyros. Graphs show
attitude estimation error for the standard and measurement differencing Kalman
filter algorithms using RADCAL GPS data.

3.7 Minimizing Receiver On-Time

The mission profile for JAWSAT involves the use of PPT thrusters to
perform gradual maneuvering of the spacecraft orbit. To prevent radio frequency
interference (RFI) and provide sufficient power for all subsystems, the PPT will not

be operated simultaneously with communications transceivers and the GPS receiver.
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During thrust maneuvers (which could last several months or even years) pulses will
be performed for roughly half of each orbit period, and the GPS receiver and
communications equipment will operate for the other half. Since the FOG attitude
errors and bias errors grow rather slowly with time, the use of intermittent GPS
measurements was studied to see if attitude knowledge could be maintained within

JAWSAT requirements.

A parametric covariance analysis was performed to determine how long the
GPS receiver can be idle while still maintaining attitude knowledge within 1 deg.
The uncertainty in the attitude grows linearly when GPS measurements are not
available. For the high quality gyros, a GPS idle time of approximately 5 min. will
result in a 3-0 error of 5 deg. These 5 min. idle periods do not satisfy the JAWSAT
operational constraint to deactivate the GPS receiver for approximately 40 minutes

during each orbit that the PPT's are in use.

Based on this analysis, additional measurements from other instruments such
as the sun sensors will be needed to estimate gyro drift during the GPS idle period.
Incorporation of sun sensor data into the integrated attitude determination algorithms

1s discussed in subsequent chapters.
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3.8 Summary and Conclusions

This chapter described an integrated attitude determination system using GPS
and FOGs for JAWSAT. JAWSAT is planned to be the first three-axis stabilized
educational satellite of its kind [Smith and Liefer, 1993]. The attitude determination
system is being designed to incorporate several sensors for improved reliability and
technology demonstration. The reasons for designing an integrated attitude
determination system for JAWSAT include improved accuracy over stand-alone
sensors and failure detection of attitude sensors. This chapter demonstrates a
method for improving the accuracy of integrated GPS and gyro attitude

measurements using a measurement differencing Kalman filter algorithm.

Results using GPS attitude data from both ground tests using a JAWSAT
mock up and on-orbit data from RADCAL were used to evaluate the Kalman filter
algorithm and the measurement differencing algorithm. The measurement
differencing algorithm sigﬁiﬁcantly reduces attitude estimation errors introduced by

GPS multipath for both the ground based and orbital data.

The JAWSAT operational requirement to limit the on-time of the GPS
receiver during orbital maneuvering motivates a discussion of including additional

sensors in the attitude estimation scheme. The inclusion of digital sun sensor
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measurements along with gyros and GPS will be undertaken in the next two

|
chapters.




Chapter 4:
ATTITUDE DETERMINATION USING

DIGITAL SUN SENSORS AND GYROS

Small satellites typically try to extract the best possible accuracy from low
cost, low power instruments. This chapter describes algorithms for spacecraft
attitude determination using low cost digital sun sensors in conjunction with

gyroscopes for JAWSAT.

The development of attitude determination algorithms using sun sensors and
gyroscopes is motivated by the fact that the GPS receiver may not always be
available to update the gyro bias parameters as discussed in section 3.7.
Furthermore, the availability of sun sensor measurements provides redundancy in the
integrated attitude determination system discussed in Chapter 5, building on the

concepts presented in this chapter.

A major challenge in the full exploitation of the digital sun sensor
measurements is the relatively large quantization levels. Quantization errors in digital
sun sensors correspond to the least significant bit of the digital output, approximately
0.5 degrees for the JAWSAT design. Quantization errors of this magnitude are
accentuated in the low dynamic environment of a three-axis stabilized spacecraft, and

are correlated with vehicle dynamics. The non-white behavior of GPS multipath and
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sun sensor quantization errors violate the assumptions of the standard Kalman filter
model, rendering the filter-computed covariance matrix an unsatisfactory indication
of filter performance. Furthermore, the fact that attitude rotations about the sun line
are unobservable by the sun sensor presents a design challenge for maintaining three-
axis attitude knowledge within JAWSAT requirements (three-sigma accuracy within
5 deg or better, if possible). This chapter provides a brief characterization of sun
sensor quantization errors followed by an investigation of attitude estimation

algorithms tailored to this measurement type.

4.1 Digital Sun Sensor Attitude Determination

Virtually every satellite has flown with some sort of sun sensor for attitude
estimation [Wertz, 1978, p. 155]. A photodetector is used to determine the angle of
incidence of the sun’s energy, thereby giving an estimate of the spacecraft
orientation. The Sun Sensor Assembly for JAWSAT will be a two-slit sensor with

direct digital output. It will be designed and fabricated at the USAF Academy.

The principle of operation of the digital sun sensor relies on strips of
photocells located beneath a light entrance slit as shown in Fig. 4.1. A Gray code
mask will be overlaid on the photocell strips so that the illumination pattern can be

used to determine the angle to the sun [Wertz, 1978]. The composite of photocell
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bits that are activated by the incident solar energy comprise the digital word that

represents the angle between the sun line and the normal to the sensor face.

Sun Slit

Photocell Strips
Covered with
Gray Scale Mask

Fig. 4.1. Sun sensor assembly for JAWSAT.

Fabrication of the digital sun sensors starts with commercially available
photovoltaic cells. Lasers are used to separate elements of a solar cell into
electrically isolated strips (as shown in the photograph in Fig. 4.2). A Gray code
pattern is etched into a glass plate and mounted on top of the solar cell strips. The

voltage output of each strip then generates the digital word output.
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==

Fig. 4.2. Solar cell cut into strips for JAWSAT digital sun sensor. Solar cell
measures approximately 2 cm X 4 cm.

There are three orthogonal pairs of sun sensors for JAWSAT to provide a
field of view of approximately 2msr. The direct readout from the sensor will be an 8-
bit digital word, with the least significant bit representing 0.5 deg. This quantization

is expected to be the largest error source.

4.2 Sun Sensor Quantization Errors

Quantization errors in the digital sun sensor present a challenge for
implementing filtering algorithms. The measurement errors are non-Gaussian,
nonlinear, and correlated with the input, all of which violate the assumptions of most
stochastic estimation algorithms [Curry, 1970]. Generally, these issues can be
ignored when the quantization levels are small or the dynamics of the input signal are

large. In this case the quantization errors can be assumed to have a uniform random
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distribution [Oppenheim and Schafer, 1989]. For JAWSAT the quantization levels

are relatively large and the dynamics are low, causing the uniform distribution

assumption to break down.

4.3a Quantized Output as a Function of Input
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Fig. 4.3. Quantization as a function of state. 4.3a illustrates quantizer output as a
Junction of input. 4.3b illustrates error as a deterministic sawtooth function.

Figure depicts a quantization bin width of 0.5 deg.

Analyzing the nonlinear effects of quantization is complicated by the fact that

the errors depend on the true state. If the true state is known exactly, then the

quantization error can be determined since quantization is a deterministic process.

Quantization effects as a function of the true state are shown in Fig. 4.3. Figure 4.3a
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shows quantizer output as a function of the input. The “sawtooth” error function of
Fig. 4.3b is characteristic of quantizers, although frequently the uniform random
distribution assumption is justified. For systems where the dynamics of the signal are
known exactly (for example, a single sine wave of known frequency in an audio
system), quantization errors can be completely characterized [Maher, 1992; Gray,
1990]. Since the true dynamics of the JAWSAT spacecraft are unknown, a
measurement update process that leads to a consistent treatment of the quantization
errors is required. In this chapter a “dead zone” method for incorporating sun sensor

measurements is proposed.

4.3 Attitude Estimation with Sun Sensors and Gyros

Spacecraft attitude estimates are computed using a linearized model of the
spacecraft motion that includes attitude and gyro bias parameters. The state vector

has seven dimensions: four states for the attitude quaternion,
qg= [q1 9 95 4, ]T , and three gyro bias states, b= [b1 b, b3]T , (one for each

axis). As in Section 3.3, the filter implementation uses only three of the quaternion
states since inclusion of all four gives rise to a singularity in the covariance matrix
time update; therefore, a six-state formulation is used following Lefferts er al.
[1982]. The fourth quaternion state can be computed at any time from the other

three to give the full seven dimensional state.
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As before, time propagation of the quaternion state estimate and the
covariance matrix is performed using gyro angular rate measurements. The sun
sensor provides only two independent observations of the three-axis attitude. This
causes a condition in the Kalman filter where one or more of the diagonal terms in
the covariance matrix tends to increase without bound. As P approaches singularity
in this manner, filter divergence or total numerical failure of the recursion relations

can occur [Maybeck, 1979].

To help alleviate divergence problems in unobservable problems (as well as to
overcome numerical instabilities that arise due to finite word length computations) a
class of algorithms known as square root filters has been developed. These
algorithms are algebraically equivalent to the Kalman filter, but they operate on a
quantity related to the square root of the variance rather than the variance itself. The
square roots of the variances have half the dynamic range of the variances, so the
square root formulations perform roughly twice as well, in terms of numerical

precision, as the conventional filter equations.

The sun sensor results presented in this chapter use the so-called U-D filter
formulation. Additional information on numerical aspects of Kalman filtering can be
found in Brown and Hwang [1992], Maybeck [1979], Bierman and Thornton [1977],

and Kaminski et al. [1971].
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The U-D factorization method decomposes the covariance matrix into

triangular and diagonal factors as

P=UDU’ 4.1)

where U is upper triangular and D is diagonal. Algorithms for carrying out this
factorization are discussed by Brown and Hwang [1992] and Maybeck [1979]. The
main numerical benefit of this method is obtained in the measurement update of the
U and D factors rather than the (nearly singular) P matrix. For convenience, the
propagation .step is summarized below, followed by a discussion of the sun sensor

measurement model and update process.
The time propagation for the total attitude quaternion estimate g from time

k-1 to k is obtained from the gyro angular velocity measurements and the attitude

kinematics described by

g, =g 4.2)

where Q* is the cross product matrix based on the gyro angular rate measurements

and At is the time increment.
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The time propagation for the covariance matrix is given by

P~ =(®U;)D, (0U;) +TQ,I" 4.3)

where @ is the state transition matrix and Q, is the process noise covariance matrix.

4.4 Digital Sun Sensor Measurement Model

Line of sight sensors such as sun sensors measure the projection of the line of
sight to the sun onto the sensor axes. The angles expressing the line of sight to the
sun in terms of the sun sensor measurement axes are illustrated in Fig. 4.4. The
horizontal (H) and vertical (V) sensor axes shown in the figure correspond to the

body X and Y axes, respectively.

an

LINE OF SIGHT
TO SUN

oot ® » SUN SENSOR

/ Y BORE SIGHT

Fig. 4.4. Sun sensor coordinate definition.
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The angles ¢ and O are the elevations of the sun in the perpendicular planes
formed by the sun sensor axes. These two planes intersect at the sensor boresight.
The actual sensor measurements, # and v, are related to the elevation angles

according to [Wertz, 1978]

u = tan®
(4.4)
v=tand

The computed unit vector in the direction of the sun based on the

measurements is given as [Sedlak and Chu, 1993]

u
s=(+u?+7) v (4.5)

and the projection of this unit vector onto the two sensor axes is

v

08 =(1+u + vz)'”H (4.6)

where g denotes the projection operation. The error covariance of the projected

measurements can be written as

R=c’B’ (4.7)
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where G is the standard deviation of the measurement errors and the projection of
these errors onto the sensor axes is represented by the matrix [Sedlak and Chu,

1993]

B=(1+u’+v’ )_3/2 {(1 +e) —uvz )} (4.8)

—uy (1 +v

Since the true values of u# and v are not available in the Kalman filter, the B matrix is
approximated using the measured values of « and v, as suggested by Sedlak and Chu

[1993].

In order to incorporate the sun sensor measurements into a Kalman filter, it
remains to relate the sun sensor measurements to the state vector. Following the

formulation of Sedlak and Chu [1993] and Vathsal [1987], the predicted observation

unit vector is given by

$= MA@g)V (4.9)

where M is the rotation matrix from the spacecraft body frame to the sensor frame
(assumed to be the identity for this analysis), A is the attitude matrix representing the
rotation from inertial to body coordinates, and 17 1s the estimated sun vector

expressed in inertial coordinates.
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The measurement residual is the projection of the residual perpendicular to

the sensor boresight:

~

Az=p(s-S) (4.10)

where § is the measured line of sight vector. This projection can be expressed in

terms of the quaternion correction states as

2m, x W)
Az=| (me g+ 4.11)
—2(m, x W)
where
W= A(gV | (4.12)

and m_ and m, are unit vectors along the sensor axes, and v is the measurement

noise with covariance R.

Note that the gyro biases are not directly observed by the sun sensor, so the

complete linearized state measurement equation is
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AZ +v (4.13)

4.14)

This measurement model for the sun sensors accounts for the fact that
rotations about the line to the sun are not observable. The optimal updated state

vector is given by

Ax* =K (A7) (4.15)
where
K=P H'(HP"'H+R)’ | (4.16)

and the updated covariance is

+_——~___1_——TT——TTT -T
P =U [D a(DU H)DU H)}U 4.17)
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where

a=HP H™ +R (4.18)

for scalar measurements.

The updated total state can be obtained as in Lefferts et al. [1982], using the

following relations (where superscript “+” indicates updated values, superscript

indicates predicted values, and “® ” denotes quaternion composition)

AZ* 5[8‘{ ] (4.19)
Ab*

855 = F‘l’ } (4.20)

g =84"®g" (4.21)

b* =b +Ab*. (4.22)
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4.5 Dead Zone Filter

What is the best way to incorporate the digital sun sensor measurements into
the filter? One straightforward approach is to just treat the center of each
quantization level as the observation at each measurement interval, as suggested by
the form of the measurement update equations in the previous subsection. The
measurement error will then be equal to the quantization error, and the measurement
residual will be equal to this error plus the prediction error. A potential difficulty
with this is that as the true attitude nears the edge of the bin, the sun sensor
measurement will pull.thc solution 1n the wrong direction. This is also likely to lead
to degradation in the bias estimates. Furthermore, the sun sensor provides only two

linearly independent measurements, limiting the observability of the three-

dimensional attitude, particularly in a sun synchronous orbit.

One way to deal with the quantization errors is to implement a “dead zone”
[e.g., Evans et al., 1994] wherein as long as the predicted and observed sun sensor
measurements lie within the same bin, the measurement residual is set to zero. If
they do not agree, the observation is set either to the center of the bin or to the edge
of the bin. .The latter approach has been selected after observing that most of the
time when the predicted and observed do not agree it is because both are near the
edge of a bin. In this approach the measurement residual is taken to be zero when

they agree and by the following expression when they do not.
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1/ =
Az=@S-A roumd(Z (0 S)] (4.23)

where round(-) represents the nonlinear “round to nearest integer” function and A is

the quantization bin width. Since quantization errors are deterministic it is possible
to predict the quantized measurement. Regardless of whether the measurement

residual is zero, the covariance is updated to reflect the information gained from the

sun sensor measurement. Note that the predicted measurement is not simply Hx™ as
in the standard Kalman filter, but instead the second term in equation (4.23) uses the

deterministic “round” function to form the measurement residual.

Conceptually, it is desirable to use all the information available from the sun
sensor measurements in a filtering_algorithm that is mathematically consistent with
the measurement errors. With the dead zone formulation, the digital sun sensor
essentially acts as a sun presence detector within each quantization level. This sun
presence information can be used in two ways, depending on whether any bin

switching in the actual or predicted observation has occurred.

An alternative to the “dead zone” approach for incorporating quantized sun
sensor measurements is to treat the errors as unknown but bounded. In other words,

no assumptions about the statistics of the errors are assumed, but the magnitude of
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the errors is known to be bounded by the quantization bin width. This notion of
unknown but bounded processes was first incorporated into a state estimation
context by Schweppe [1973, 1968]. Recent applications and refinements of these
techniques are described in the review articles by Combettes [1993] and Walter and
Piet-Lahanier [1990]. A difficulty with these methods for sequential state estimation

is that they can lead to excessively conservative error bounds on the state estimates.

Several authors have proposed the application of set membership estimation
to quantization errors in various A7D sampling systems such as a digital sun sensor
[e.g., Cerone, 1993; Combettes, 1993; Rao and Huang, 1992; Belaforte ez al., 1990;
Walter and Piet-Lahanier, 1990; Fogel and Huang, 1982; Schweppe, 1973]. None of
these papers, however, presents any numerical or empirical results for state
estimation using quantized measurements. Chesley and Axelrad [1995] showed that
existing sequential algorithms using ellipsoidal bounding sets are generally
impractical for spacecraft attitude estimation using the JAWSAT digital sun sensor
due to the excessively conservative error bounds on the state estimates. Preliminary
numerical evaluations of a new algorithm due to Hong [1993] that uses confidence
intervals associated with bounding sets also seem to suffer the same excessively

conservative error bounds.
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4.6 Simulation Results and Discussion

The dead zone and EKF algorithms described in this chapter were
implemented in a MATLAB sim.ulation. For the purpose of emphasizing the
observability limitations of the sun sensor, results are first presented for a sun-
synchronous, dawn-dusk orbit. In this configuration the sun sensor suffers does not
observe the pitch axis. The EKF algorithm should be expected to suffer numerical
instability caused by the lack of observability which could cause the estimates of all

filter states to diverge [Brown and Hwang, 1992].

Figure 4.5 shows the attitude estimation errors for the extended Kalman
filter. Note that the filter estimates diverge after a short time and that the divergence

occurs most rapidly in the pitch axis which is unobservable.
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Fig. 4.5. Attitude Estimation Error: Standard EKF Algorithm. Sun sensor
measurements are based on a dawn-dusk sun synchronous orbit.

L
o
o

The measurement updates based on the quantized measurements emphasize
the center of the measurement bin. Since the true state is not always at the center of
the bin, measurements incorporated in this way tend to drive the filter away from the

correct estimate.

The dead zone filter results for the dawn-dusk sun synchronous orbit are
presented in Fig. 4.6. The dead zone filter helps reduce the effects of introducing

biased measurements due to the coarse quantization in the digital sun sensor.
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However, the pitch axis is never observed in this orbit which ultimately causes this

filter to diverge as well.

Attitude Error
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Fig. 4.6. Attitude Estimation Error: Dead Zone Algorithm. Sun sensor

measurements are based on a dawn-dusk sun synchronous orbit.

The dawn-dusk orbit illustrates the worst case possible for the combination of

digital sun sensors and gyros.

These results demonstrate that errors grow most

rapidly in the unobservable axis, and that the dead zone approach improves filter

performance for the large quantization levels present in the digital sun sensor. These

results also demonstrate that if JAWSAT is to be placed in a dawn-dusk orbit,
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additional measurements from an Earth horizon scanner or three-axis magnetometer
will be needed to maintain attitude determination accuracy when GPS measurements

are not available.

Although final orbit parameters for JAWSAT have not been established, the
baseline design for JAWSAT was a noon-midnight sun synchronous orbit. Since the
sun direction does not remain along the same axis as the spacecraft travels along the
noon-midnight orbit, the observability limitations in this case should be somewhat
alleviated. In other words, the information lost in the unobservable direction is

distributed among more than one attitude state.

Figure 4.7 shows the attitude estimation errors for the standard Kalman filter
algorithm using digital sun sensors and gyros in the noon-midnight orbit. The
simulation run begins with the spacecraft above the North Pole so that the roll axis is
unobservable initially. Note that the standard filter diverges quite rapidly, as it did
for the dawn-dusk case (see Fig. 4.5). However, in Fig. 4.7 the errors grow most
rapidly in the unobservable roll direction, as expected. The incorporation of the
quantized measurements causes the filter to diverge before the satellite motion can be

used to gain any information in the roll axis.
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Fig. 4.7. Attitude Estimation Error: Standard EKF Algorithm. Sun sensor
measurements are based on a noon-midnight sun synchronous orbit.
Attitude estimation errors for the dead zone algorithm in the noon-midnight

orbit are shown in Fig. 4.8. The results show that the dead zone algorithm operates
for at 60 min. without diverging in the noon-midnight orbit. After about 60 min. the
spacecraft would enter an eclipse period and GPS measurements would be used to

update the attitude filter.
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Fig. 4.8. Attitude Estimation Error: Dead Zone Algorithm. Sun sensor
measurements are based on a noon-midnight sun synchronous orbit.

The computed filter covariance describes the quaternion states and is not
directly related to the yaw, roll, and pitch angles. However, the computed
covariance for the attitude states remains bounded throughout the run. In fact, the

computed 1-c uncertainties in the attitude quaternion states remain less than 5 deg

for the time period simulated.
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The combination of somewhat improved observability in the high noon orbit
and the use of measurement updates based on the dead zone result in an algorithm
that satisfies JAWSAT mission requirements during planned outages of the GPS
receiver. Further analysis will be required when the final orbit parameters of

JAWSAT are decided, particularly if the orbit is nearly dawn-dusk.

4.7 Summary and Conclusions

Recursive state estimation algorithms have been described for a small satellite
attitude determination system using digital sun sensors and gyros. The filters
discussed include an extended Kalman filter and a modified filter that employs a
“dead zone” for the sun sensor measurements where only sun presence information is
used within each quantization bin. Measurement updates are based on measurement

residuals that exceed the quantization bin width.

Large quantization errors in the digital sun sensors cause the standard
Kalman filter algorithm to diverge since the measurements are biased toward the
center of the quantization bin. The dead zone filter overcomes these problems by
providing measurement updates based on bin switching rather than the center of each
bin. The dead zone filter provides stable attitude estimates in the noon-midnight

orbit planned for JAWSAT.
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The combination of sun sensors and gyros is generally unobservable [Vathsal,
1987]. Additional measurements are needed to maintain filter stability, either during
solar eclipse periods or poor observability conditions. Additional measurements
from GPS will be incorporated in an integrated attitude estimation method in Chapter
5. As an intermediate step, this chapter has considered a dead zone filter that is
adequate for attitude determination using only sun sensors and gyros during

intermittent outages of the GPS attitude measurements.




Chapter 5:

INTEGRATED GPS ATTITUDE DETERMINATION

Multisensor state estimation and failure detection has received considerable
interest for aerospace applications where an optimal estimate is required based on
measurements from several sensors. In fact, the sensor “measurements” may actually
be the output from a Kalman filter contained within a given sensor, such as a GPS
receiver [Carlson, 1990]. As several off-the-shelf components are combined to form
an overall system, the methods for integrating measurements from these distributed

systems requires careful attention.

This chapter discusses integrated filtering algorithms for the JAWSAT
attitude determination system. First, a centralized Kalman filter methodology is
discussed and the shortcomings of this method are summarized. Then a distributed
Kalman filter approach, namely the federated filter algorithm, is introduced. Finally,
a federated filter based on time-correlated measurement errors due to GPS multipath
is developed, results from the algorithm are presented, and implications for an

integrated spacecraft attitude determination system are discussed.
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5.1 Centralized Kalman Filtering

A straightforward extension of the algorithms presented in Chapters 3 and 4
is to form state estimates using multiple sensors in a single, globally optimal Kalman
filter that incorporates a separate measurement update step for each sensor. For the
JAWSAT attitude determination system, this involves updates based on sun sensor

and GPS attitude measurements.

The centralized filter algorithm is summarized in Fig. 5.1, where GPS

measurement differencing can be employed as desired.

Gyro Measurements GPS Measurements
Attitude Attitude
Propagation and Gyro
Bias State
Update

+

Sun Sensor Measurements

Fig. 5.1. Centralized Kalman filter algorithm

The centralized Kalman filter approach has several shortcomings which are
described by Carlson and Berarducci [1994]. These include: heavy computational
loads, poor fault tolerance, and inability to correctly process prefiltered data. These
shortcomings are all critical concerns for low cost satellites, where it is desirable to

minimize computational loads, sensor failures are more likely, and prefiltered data
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from gyros or GPS is likely to be available from off-the-shelf sensors. Therefore,
consideration will be given to decentralized filtering methods for the integrated

attitude determination system for JAWSAT.

5.2 Decentralized Kalman Filtering

Decentralized or distributed Kalman filtering methods have been developed
to exploit parallel processing technology, fault tolerant system design, and
integration of multiple specialized sensors [Carlson and Berarducci, 1994]. The
basic idea of decentralized filtering is to divide the global system information among
local sensors associated with each of the contributing sensors. Research on
decentralized estimation using distinct local filters to process measurements traces
back to Speyer’s [1979] formulation. Subsequent developments are summarized by
Kerr [1987]. Recent developments in the decentralized filtering problem include the
estimate fusion approach of Carpenter and Bishop [1995, 1994, 1993]. They
develop a means for fusing estimates from two separate filters, but they do not
generalize to the case of more than two contributing sensors. Pao [1994] develops a
fusion algorithm for tracking multiple targets using measurements from distributed
sensors. Her approach is specifically tailored to a tracking radar environment where
unique state vectors are desired for each separate target, and is not readily extended

to spacecraft attitude estimation. Additional studies [e.g., Berg and Durrant-Whyte,
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1992; Bailey and Sims, 1990; Hashemipour et al., 1988; Bierman and Belzer, 1985;
and Castanon and Teneketzis, 1985] have developed decentralized filtering
algorithms for various applications. None of these existing studies has considered

the use of a quaternion attitude representation in the state vector.

A particularly attractive method for performing decentralized filtering for
navigation systems is the so-called “federated” Kalman filter that has been developed
by Carlson [1990, 1988]. The advantages of the federated filter include the
following: the local filters are constructed such that the cross correlation between
local filters are eliminated; local estimators are able to share common information
which can be combined in a rigorous manner to form a global best estimate; “off-the-
shelf” sensors, including those with embedded Kalman filters, can be combined in a
consistent, rigorous manner. This approach is very well suited to navigation
applications since a master filter propagation step can be performed based on
measurements from gyros or an inertial navigation system. In this chapter the
federated filter approach is extended to reduce the effects of GPS multipath errors in

the integrated systermn developed for the JAWSAT attitude determination system.

The crux of the federated filter is the ability to combine measurements from
distinct local filters into a globally optimal solution. If the local filters are
constructed to allow for this distribution of information, then the overall filter

covariance, P, and the global state estimate, X,, can be constructed from the local

f’
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filter covariance and state estimates, P, and X; where i=1,...,N and N is the total

number of partitions. The optimal combination of these distributed estimates is given

by [Kerr, 1987]

P, =(P'+.+pB,)" (5.1)
2, =P,(R'%+.+P,'%,) (5.2)
The details of how these separate estimates are constructed so that equations (5.1)-

(5.2) result in a valid global estimate will be addressed further in the next section.

Recent investigations of the federated filter method include Carlson and
Berarducci [1994], Lawrence and Berarducci [1994], Gao et al. [1993, 1992],
Moorman and Bullock [1993], Felter [1992], and Broatch and Henley [1991].
These studies all focus on integrated navigation applications, rather than attitude
estimation.  Implementation of a federated filter for a quaternion attitude
representation requires a modification of the master filter fusion equations. This

extension of the original federated filter is discussed in Section 5.5.
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5.3 Federated Kalman Filter Algorithm

Motivated by the shortcomings of centralized Kalman filters outlined in the
previous section, Carlson [1990, 1988] developed the federated filter to address
many of these concerns. The federated filter builds on several earlier developments
in decentralized filtering, particularly the developments by Kerr [1987], Bierman and
Belzer [1985], Chang [1980], and Speyer [1979]. The federated filter distributes the
global system information among the local filters associated with each contributing
sensor. These distinct local filter estimates can recombined in an optimal way, or in a

conservatively suboptimal way, depending on the implementation selected.
The local filter estimates are constructed from the global (centralized)
Kalman filter using rigorous information sharing principles [Carlsbn, 1990]. The

basic approach of this method is to form a global state vector, x, that includes the

states from each of the local filters, x, fori=1,..., N, as

x=] : (5.3)

with global covariance
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P=| : - (5.4)

where P, is the covariance matrix for the state vector x,, and P, fori# j is the

cross covariance of state x; with state x;.

Then, it can be shown that the measurement update equations for local filter i

are given by the standard Kalman filter equations [Carlson, 1990], namely

x"=x" +K, (Zi - Hixi—)

(5.5)
Pii+ = (I -K.H, )Iaii_
(5.6)
where
K, = Pii_HiT(HiPiz‘_HiT + Ri)-l (3.7)
The global propagation step can be written as [Carlson, 1990]
x, D, 0 | x I,
= & T o A (5.8)
AN Jes 0 Dy | xy B ry




(5.9)
It is clear from equation (5.8) that the state vector propagation can be
partitioned into local filter computations using the standard Kalman filter equation,

that 1is,

x,  =Pux, +Tw (5.10)
There are two problems, however, with partitioning the covariance propagation, one
related to the a priori covariance, and the other related to the process noise. The
problem is the appearance of nonzero matrices in the off-diagonal positions in
equation (5.9). The problem can be solved by a formulation of equation (5.9) that
contains all block diagonal matrices which can be readily separated into local filter
estimates. Following the derivation introduced by Carlson [1988], note that the last

term in equation (5.9) can be rewritten as

(5.11)

Next, the matrix upper bound theorem [Carlson, 1990] is applied,
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-4 I - (5.12)

N
where OS——1—_<_1 for all i and 2——1—=1.
'Yi i:lYi

The matrix inequality in equation (5.12) indicates that the larger matrix is

“more positive semi-definite” than the smaller matrix. Stated more precisely,

SRR P RS DY) (5.13)
0 - v,0 Qg - 0

where the symbol 20 in equation (5.13) indicates positive semidefiniteness. (A

positive semi-definite matrix has all eigenvalues greater than or equal to zero.)

The terms v, in equation (5.13) are defined such that 0 < 1 <1 for all i and
Y

N
zi =1. This leads to a conservative block diagonal form for the global process
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In order to fully block diagonalize equation (5.9), a similar upper bounding
procedure is applied to the a priori covariance matrix. Note that once the initial
global covariance matrix has been diagonalized at time zero, the structure of
equation (5.9) dictates that the off-diagonal terms must remain identically zero
[Carlson, 1990]. Thus, the covariance propagation for partition i can be expressed

as

=, Piik q)iiT +Ly iQriT (5.14)

Hran

where 7y, represents the share of the global information allotted to local filter i

(usually v, = N for all 7).

Various implementation options for sharing information in the federated filter
are described by Carlson and Berarducci [1994, 1993], depending on the desired
level of optimality or fault tolerance. The differences between these information
sharing methods depend. on the amount of filter “memory” associated with the master
filter and local filters. In the federated filters discussed for the JAWSAT attitude
determination system discussed in this chapter, the “fusion reset” mode is used. In
this configuration the global filter retains the long term memory and the local filters
are reset at each measurement epoch with global state and covariance information
from the master filter [Carlson and Berarducci, 1994]. This implementation was

selected since allowing the sun sensor local filter to operate for extended periods
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without reset leads to divergence due to the observability limitations discussed in

Chapter 4.

The advantage of the fusion reset mode are that the local filters operate at
higher accuarcies due to the incorporation of information from other sensors through
the master fusion reset. This improved accuracy for the local filters prevents the

limited observabilty inherent in the digital sun sensors from degrading the overall

results.

In summary, the fusion reset mode is the most accurate of the data processing
modes in the federated filter formulation. A disadvantage of this approach is that the
fusion updates from the local filters to the master filter must occur simultaneously.
This could limit the usefulness of this approach in real time applications. The other
notable disadvantage of this approach is the fact that the fusion reset mode has the
poorest fault detection and failure identification characteristics of any of the data
fusion modes. For a discussion of the relative merits of other data fusion modes, see
Carlson and Berarducci [1994]. An evaluation of fault tolerance and failure
detection for the JAWSAT attitude determination system is discussed in Chapter 7 as

a subject for future research.

The federated Kalman filter provides flexible implementation options for

maximum accuracy, maximum fault tolerance, or an intermediate combination of
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accuracy and fault tolerance. In any implementation, federated filter estimates are
conservatively suboptimal at worst. Further, the information lost by processing

measurements in a suboptimal way can be characterized rigorously.

5.4 Federated Kalman Filtering with Time-Correlated Measurement Errors

GPS based attitude determination provides a contributing sensor that can be
characterized by correlated measurement errors. This section provides a derivation
of a federated filter that includes GPS attitude measurements in an algorithm that
considers time-correlated errors. The new algorithm is not strictly optimal, since a
matrix approximation is required to construct distinct local filter estimates. Recall
that the standard filter implementation is not optimal, either, since the assumption of
Gaussian measurement errors has been violated.  Performance comparisons

highlighting the benefits of the new algorithm will be presented in the next section.

The basic approach in the derivation of a Federated Kalman Filter for
measurements containing time-correlated errors is to use measurement differencing
(single differencing over a time step) in local filters to “whiten” the errors in the
measurement difference pseudo-measurement. A matrix upper bound is then
employed to determine an approximate conservative local filter. In the derivations

that follow, all the local filter partitions are assumed to have the same state vector, as




118

is the case for the JAWSAT filter design. This need not be true in general, but this is
easily accommodated with a slightly more cumbersome notation and careful

accounting of global and local state variables [see Carlson, 1990].

The problem is to estimate the state vector x in a linear system described by:

Xy =Px, +Tw, (5.15)
z=Hx+o, (5.16)
o, =Yoo, +v, (5.17)

where @ is the state transition matrix from x, (some prior time) to x,,,, I' is the
noise distribution matrix, z; is the measurement from sensor 7, H; is the observation
matrix for sensor i, ®, is the time-correlated measurement noise described by state

transition matrix ¥, and w and v, are white noise driving sequences.

Note that it has been assumed that there is no correlation of measurement
errors from separate sensors. (This assumption is reasonable for the JAWSAT
sensor suite, but there may be some cases where sensors will be contaminated by the
same non-white error source, e.g., visible spectrum sensors contaminated by the

same sun glint [see Roy and Iltes, 1991].)

The error statistics of the above quantities are:
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(5.18)

(5.19)

(5.20)

(5.21)

Next, the global filter variables are defined to include the states from

i=1,...,N sensors, as follows

X
X3
x={
[ X
P, Py
P= :
_PNl - Py

(5.22)

(5.23)

Note that the local state vectors, x;, are assumed to all contain exactly the

same states for ease of notation in the following derivation. As shown by Carlson

[1990], if the local estimates can be formulated such that they are uncorrelated (i.e.,

P, =0,i# j), then the globally optimal state and covariance can be expressed as

P, =[P, +.+Py |

(5.24)




120

Sy =B [P 2w APy 2 | (5.25)

Thus, the crucial part of the federated filter formulation is to form local filter
estimates which can be globally combined in this way. This will be performed in the
following steps:

e The global optimal estimate will be expressed in terms of measurement
differencing for each sensor;

e The global time update will be formulated so that estimates may be combined
using the above fusion equations; and

e The global measurement update will be shown to be approximately equal to

distinct local filter updates which can be accomplished independently.

Directing attention to the problem of measurement differencing, the global

state vector propagation is expressed in matrix form as:
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z=[0 - H - 0] |+o, (5.28)

where i is the sensor index and k is the time index. The measurement equation

indicates that measurements are available from individual, independent sensors only.

Note that the measurement errors, ®,, are not white, but are correlated in

time. Thus, the measurement error can be expressed as

@, =¥, +v, (5.29)
where v, 1s a white measurement error vector. Note that for a sensor corrupted only

by white measurement noise, ¥, = 0.

The presence of time-correlated measurement errors was circumvented in the
standard Kalman filter by forming a pseudo-measurement from the difference of
successive measurements (see Chapter 3). Proceeding similarly for the multisensor

case, the measurement difference is formed

t.-i,( = (Zi )kﬂ - (Zi )k (5.30)




where i is the sensor index and £ is the time step index.
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The measurement vectors

from the different sensors are concatenated as

1

|

Thus,
g,

Cnle

¢, Z; ¥, o 0 g
Y N (5.31)
Cvle Lawlen LO = ¥ylzv ],

Using the measurement equations and state transition relation gives

H, 0 ([®, 0 Tx] [T ¥, 0 To,] v
=|: : : I N Y N T R N
|0 Hy |l 0 @, lxy| [Ty 0 ¥, o, v,
(¥, 0 ([ H, 0Tx] [o,
- DRl S IR EY
0 - Lo Hylxy| oy
(5.32)
H, 0 o, 0 ¥, 0 TH, 0 [ x,
0 - Hy| D, 0 ¥, o H, ||| xy
H, 0T, v
+l 2 I
0 H, T, Vy
(5.33)

This can be rewritten as
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={ . A E (5.34)

where the definitions of H," and €, are given as
H' =H® -YH (5.35)

g, =HIT w+y, (5.36)

Note that €; is a white measurement error sequence, but it is correlated with

the process noise w. This correlation is described by the covariance matrix

H, 0 || I; 12
C=Elw : w+
0 H,|T, Vy
HT 0
=FE wa[I"IT TR M +E[w[v1T vlT]]
0 H,T
HT 0
=Q[r” r,/] :
0 HS’
C=Q[I,H/’ T, H,"]

(5.37)

Note that the (pseudo) measurement noise covariance is given by
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R, = E[sisz]
= B|(BLw+v, B T w+v, ) | (5.38)

= HiFiQiroHjT +6,-,-

Recall that E[ww”|=Q and E[vv,"|=Q;. Thus,

(lelerTH1T+611) (HIFIQFNTHNT_i_GlN)

R= (5.39)

(HNI-‘NQFI;HIT*—QNI) (HNFNQI‘NT:HNT-F_Q“NN)

Approximate federated filter estimates that use the information present in the time-

correlated measurements can now be formulated.

State Propagation

Having formulated the global measurement difference, the global time
propagation step will be considered. Following Bryson and Ho [1975] for the single
sensor case, the standard Kalman filter time update equation can be adjoined as

follows
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X @, 0 | x I g H; 0 | x €
= +| ¢ w+D - -
XN list 0 Dy i xv], LIy Cn 0 Hy" | xy €y
(5.40)

where all that has been done is to add zero to equation (5.8) in the form of equation

(5.28) times some unknown matrix multiplier, D. Rearranging terms yields

X D, 0 H1* 0 X g, I €
= -D| : : +D + w—D
XN Jpat 0 Dy 0 Hy || xy B Cn X Iy En
(541

w=|: |lw=D| : (5.42)

It is desired that the term w’” be additive white noise with zero correlation to

the measurement noises, €;, so this term is considered separately.

8’1
w’ is correlated to the measurement noise | : | according to
€ N
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Fl € rl D11 : Duv R11 RNN
E w-D (Si)T = [C, Cy]- E
FN €y FN DNI ) DNN RNN RNN
(5.43)

The correlation between global measurement and process error terms will be

identically zero if D is chosen so that the following condition is satisfied:

rlcl FICN Dn Duv Ru Ruv
: KR : - e 2 .1 =0 (5.44)
FNCI FNCN DNI DNN Rm RNN
Therefore,
-1
D11 DIN rxcl FlcN R11 RIN
=| : : s (5.45)
DNI DNN FNCI ' FNCN RN] RNN

Note that the matrix inversion always exists provided the measurements are
noisy. Using this choice for D as defined in equation (5.45), the time propagation

equations for the state estimate have the form
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’21 D, 0 D” Duv Hl* 0 ’El
iN £+l 0 (I)NN DNI : DNN 0 HN* )eN &
Dn Duv C.n
+ :
DNl DNN CN x

(5.46)

Note that the Gaussian, zero-mean, white noise terms are not propagated.

These terms are just a linear combination of Gaussian, zero-mean, white noise terms
with expectation zero. Specifically,

E[w’]= E[GQG"H'R™HGv+GQG"H'R'w|=0 (5:47)

The time update equation for the covariance matrix is
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Pll PIN Qll O Dll Dll Hl 0 Pll PlN
PNl PNN K+l 0 q)NN Du DNN 0 HN* PNI PNN P
- - - - 7
¢11 O Dll DIN Hl 0
L 0 (I)NN_ DNl DNN_‘_ 0 HN*_
- - — -7
DH DlN Rll RIN D]l IN
+ : : :
L™ NI DNN _RNI RNN _DNl DNN
_l_l
+ i Qry T, ]
LIy
(5.48)

At this point there is no clear way to partition the computations into local
filters and recombine the estimates using equations (5.1-5.2). The portions of the
global propagation equations that do not partition cleanly are those terms due to the
off-diagonal block terms of the Q, D and P matrices. The procedure followed will be
to find suitable bounds or approximations to treat each of these in turn. For the

covariance matrix Q, first the last term is rewritten as (following Carlson [1988])

Then the upper bounding is applied as in Section 5.3:
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- - (5.50)

where the scalar quantities 7y, have the same properties as before (i.e., 0 < L <1 for

Vi

N
all i and 2—!—= 1). This has the effect that each partition conservatively adds

i=1 i
process noise in the time update step (since all of the block matrices are positive

semi-definite).

Block Diagonal Approximation of the State Propagation

The D matrix proves to be the most problematic aspect of this formulation,
since it cannot be directly partitioned into a block diagonal matrix. Therefore, a
block diagonal approximation of D will be formed so that the global update and
propagation equations can be partitioned. This is accomplished by employing the

upper bounding procedure used for the Q matrix above.

Recall that D was defined above as
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= : : - (5.51)

Block diagonal approximations for each of the two terms will be considered. First R

(HIFIQFITH1T+611) (HIFIQFNTHNT +61N)

R = (5.52)

(HNFNQFITH1T+-Q—NI) (HNFNQFNTHNT"'—QNN)

Since the inverse of R appears in the propagation equations (through the definition of
the D matrix), a lower bound on R that is block diagonal is required. A lower bound
on R will give an upper bound on its inverse, thereby conservatively adding process

noise at each propagation step. A straightforward lower bound on R is given by
R>| ¢ - (5.53)

Thus if R is approximated by its lower bound given in equation (5.55), the
information content of each measurement will be estimated conservatively. For the
case of the JAWSAT attitude determination system, little is lost in this approximation
since the process noise (represented by the gyro measurement errors) is small

compared to the sensor measurement noise.
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Next, consider the I'C terms
rc, - r.c,] [rer,/#™ .- TQL,H,’
rNCI FNCN rNerrle FNQFNTHNT
r, - 0JQ - Q rlT e 0 HlT e 0
0 - I,|Q - Q] 0 - r,/1 o - H,S
(5.54)
The upper bound theorem is applied to this equation to give
rc, - Ir.C, r, - 0Jy,Q -~ © rlT e 0 HIT e 0
T £ O S O A (NS U S
r,c, - r,C, 0 -« Iy| 0 - y,Q 0 - rNT 0 - HNT
(5.55)

In order to partition the results, a suboptimal approximation of the
correlation between the global process and measurement noises is desired. The
measurement differencing federated filter uses some of the information about the
correlated measurements in a conservative way (within the limits of the
approximation used). Recall that a standard Kalman Filter or standard Federated
Kalman Filter is tacitly suboptimal since the time correlation of the measurements is

simply ignored.

To perform partitioning, an approximation for R has been assumed to give
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Qll O
R=f : ™. (5.56)
0 ' GNN
and
I,C, r,c,] Ty, QL H' 0
= : : (5.57)
FNCI FNCN 0 : FNY NQFNTHNT
Therefore, the approximation for D is D, which is defined as
Tyt ... 0 Q.7 ...
LT ) @ 0 (5.58)
0 o TWAQLYH, | 0 o Q7

The global time propagation equations based on the approximated values for

D, and R are now presented




%, @, 0 D, 0 [HS 0 |I[ %
11
Zx Lo 0 - @, 0 D, | O H, |||
p, -~ 0 g,
+ . . .
0 DuNN cN k
Pu Puv (I)” 0 Da" 0 Hl 0 Pn
PN] PNN k4l 0 QNN 0 DaNN O HN* PNl
- T
@, 0 D, 0 | H, 0
..O q>NN O ayy 0 HN*
D, o TR, 0 (o, o "
+ : . :
0 D, O R, 0 D,
T, 0 vy,0 O end 0
+ : : :
K Gyfl O YOl O G,"

So, to summarize the time update equations for partition i:

%, =(®,-D, A} +D,L,

e+l

= (q)ii - Da,-,- Hi* )Piik (q)ii - Da,.,. I-Ii* )T
D, (HTy,Qr,H D, +Ty,Qr/

fig

where
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(5.60)

(5.61)

(5.62)
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H'=H®,-YH, (5.63)

a,

D, = EY[QriTHiT(HiriYiQFiTHiT +Q; )—1 (5.64)

Note that the choice for the initial covariance relies on the fact that

<y (5.65)

This is used to initialize the covariance matrices and to decouple the covariance
matrix time updates. As pointed out in Carlson [1990], once the covariance matrices
are decoupled, no cross coupling can be introduced due to the structure of equation
(5.62). All the a priori values of the covariance matrix will be the same since no

measurement information is used to arrive at the a priori state estimate.

Note that information sharing appears in the covariance time update and
unshared process noise appears in both the state and covariance time update.
Contrast this with the standard (Carlson) formulation where information sharing only
occurs in one term of the covariance time update and no unshared process noise
appears in the time updates. (Recall that this process noise was introduced as a result
of defining D so that no cross-correlation between the global differenced process and

measurement noises would appear.) Also note that the standard (Carlson)
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formulation only requires 7y to appear linearly in the propagation equations. Here 'y

appears nonlinearly.

Measurement Update

In this subsection, the global measurement update for the measurement

differencing federated filter is formulated and it is shown that it can be partitioned.

The measurement update will be of the form:

=3 +K(, -H'%) (5.66)

P'=P -KHP (5.67)
Expanding K into matrix form yields

Hl‘ 0 P, - P, Hl‘ 0 T
0 - HN‘ P, - Pul| O - HN‘

(H1r171erTH1T+-Qn) 0

-1

+

0 (HNFNYNQFNTHNT+—Q-NN)

(5.68)
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where the same conservative approximation for R from the propagation step has
been used. Note that in overestimating R, K tends to be underestimated; therefore,

the current measurement is slightly devalued.

Finally, keep in mind that the estimate given at time k (in either the master
filter or the local filters) is conditioned on the measurement at time k+1. To obtain
the best estimate of the state at time k+1 conditioned on the measurement at time

k+1, use the prediction equation

Koo = Py + Da,.,. (C —H *ikum) (5.69)

Expanding this into matrix form and using the choice for D given in equation (5.45)

above gives the following result for the partition i measurement update:
Xpotinr = Py + D, (C' - H*ik'k”) (5.70)
Note that unshared process noise appears in the measurement update via the

procedure for ensuring the global process and measurement noise have zero cross

correlation.
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5.5 Estimate Fusion for the Quaternion Filter
The nonlinear combination properties of quaternions leads to a nonstandard
implementation of the state estimate fusion (given by equation 5.2) for spacecraft
attitude determination. The state estimate fusion method presented in this section

applies to both the measurement differencing and conventional federated filters.

Recall that the state estimate covariance is defined as the noise covariance of

the state estimation errors, i.e.,

P=E[Ax.mr]=EHZHZH (5.71)

which is not equivalent to EI:(BE - ) (E -3 )T:I .

The master filter fused covariance matrix for the JAWSAT attitude

estimation scheme is given as
P, =P +P (5.72)

where P, and P, are the covariance matrices from local filters 1 and 2.
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Since the global covariance matrix describes the errors in the state estimate
correction, AX, and since this correction is nonlinearly related to the state (due to

the quaternion composition relations), the master filter state vector correction is

formed as
A%, = P, (B7A%, + B,7'AR, ) (5.73)
where
8q.
Az =| 7 (5.74)
Ab,

In this formulation g, represents the small angle quaternion of dimension

three expressing the rotation between the a priori master state estimate, g,, , and

the estimate from local filter number i. Using the quaternion composition relations,

8, =9,®q," (5.75)

Since the line bias terms combine linearly, this gives

Ab, =b. — b, (5.76)
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and the master state correction computed in equation (5.73) is
A%, = [ZZ } (5.77)
The master fusion estimate of the full state is then computed using
T =80y ®qy~ (5.78)
and
b, =Ab, +b, (5.79)

This estimate fusion method is used for the quaternion filter simulation results

that are discussed in the next section.

5.6 Simulation Results and Discussion

Simulation results are presented for federated filter algorithms developed in

this chapter. The standard federated filter algorithm is compared with the
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measurement differencing federated filter using GPS multipath errors from ground
tests and RADCAL flight tests. The simulations also use high quality gyros and
digital sun sensors in the attitude determination system. Gyro measurements are
taken every second, and GPS and sun sensor measurements are taken every 12
seconds. Sun visibility is modeled for a dawn-dusk orbit, so that sun sensor
measurements are always available for the integrated filter. The U-D factorization
method was not used in these simulations since the covariance matrix remains well

conditioned due to the regular incorporation of GPS measurements.

Ground Test Results

Figures 5.2 and 5.3 compare attitude and bias estimation errors for the

centralized and federated Kalman filter algorithms using GPS ground test data.
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Attitude Errors
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Fig. 5.2. Attitude Error Comparison: Centralized and Federated Kalman Filters
with Measurement Differencing Using GPS Ground Data.
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T x10™ Gyro Bias Errors: EKF and Measurement Differencing
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Fig. 5.3. Gyro Bias Error Comparison: Centralized and Federated Kalman Filters
with Measurement Differencing Using GPS Ground Data.

Note that the measurement differencing algorithms for both the centralized
and federated Kalrnan filters perform very similarly overall. The fact that no
significant differences in accuracy exists for the two algorithms indicates that the
approximations necessary to accommodate measurement differencing in the
federated filter have no appreciable effect on filter accuracy. An evaluation of the
fault tolerance and failure detection capabilities of the various federated filter

implementations is a topic for future research.
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RADCAL Results

Figures 5.4 and 5.5 compare attitude and bias estimation errors for the

centralized and federated Kalman filter algorithms using GPS data from RADCAL.
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Fig. 5.4. Attitude Error Comparison: Centralized and Federated Kalman Filters
with Measurement Differencing Using GPS Data from RADCAL.
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T x10™ Gyro Bias Errors: EKF and Measurement Differencing
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Fig. 5.5. Gyro Bias Error Comparison: Centralized and Federated Kalman Filters
with Measurement Differencing Using GPS Data from RADCAL.

Note that the attitude errors in the centralized filter lag the federated filter
errors for both the RADCAL and ground test data. The federated filter formulation
introduces conservatively large process noise which causes it to de-weight the
propagated estimate and follow the measurements more closely. Although the
dynamics of the two estimation processes differ, the effects on the attitude control
system are expected to be minor. Controller bandwidths are typically in the range of
0.1 - 0.001 Hz, and the bandwidth differences in the estimation algorithms are not

large compared with the controller bandwidth.
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Results from the federated filter consistently appear more jumpy than the
centralized filter. This occurs because each GPS attitude measurement is included in
two pseudomeasurement updates. This makes the federated filter more sensitive to
outliers in the measurement data, since an erroneous data point will be incorporated
in twice. The existence of outliers in the GPS measurement data suggests a non-
Gaussian error distribution. These non-Gaussian errors will be considered further in

the nonlinear filter discussed in Chapter 6.

5.7 Summary and Conclusion

An algorithm for federated Kalman filtering in the presence of time-correlated
multipath errors has been developed in this chapter. The new algorithm employs
measurement differencing to reduce the effects of multipath errors and uses
conservative approximations of the process noise to allow the global state
information to be partitioned into distinct local filters. An estimate fusion method for
combining the local filter quaternion estimates to form the global estimate was also
presented. Simulation results indicate that the federated filter with measurement
differencing performs comparably to a centralized filter with measurement
differencing, validating the conservative assumptions used in the derivation of the
algorithm. Investigation of federated filter modes to enhance fault tolerance and

failure detection is identified as a topic for future research.




Chapter 6:
NONLINEAR FILTERING OF GPS

AND GYRO MEASUREMENTS

Preliminary analysis of an alternative filtering technique based on a nonlinear
gain function is presented in this chapter. The chapter begins with a summary of the
Kalman filtering equations for a linear system subject to non-white measurement
errors, such as multipath. Simulation results are presented for a spacecraft attitude
estimation algorithm using a nonlinear Kalman gain function based on heuristics.
The results of this simulation indicate that a nonlinear filtering technique is a

promising area for future research.

6.1 Nonlinear Filtering of Spacecraft Attitude

Integrated measurements from GPS and gyros can be used for attitude
determination on small satellites in a number of ways. For example, as an alternative
to the measurement differencing approach for mitigating multipath errors, nonlinear

filtering methods may yield promising results.

A nonlinear filtering approach for integrating GPS and FOG measurements

begins with the same basic estimation strategy used throughout this dissertation.
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That is, gyros measurements would be used to perform the time propagation of the
state estimates with GPS measurements used to update the estimates. However, the
non-Gaussian measurement errors due to GPS multipath would be accounted for
using nonlinear estimation techniques. The particular nonlinear state estimation
techniques for this case would be based on linear state equations with non-Gaussian
measurement noise (represented by the GPS error covariance). Nonlinear state

estimation for this case was first addressed by Masreliez [1975].

The gist of the filtering approach is to compute a statistically correct
nonlinear gain function for the non-Gaussian measurement noise. The linear system

equations are given by

X =P x +wy 6.1)
7z, =Hx +v, '

where w is Gaussian with covariance Q and v is non-Gaussian. The minimum
variance estimate can be computed recursively using the score function [Masreliez,

1975]

%' =% +P H; g(z) (6.2)
B =P -PB H!G(z,)H,P,~ (6.3)

P, =0P/o" +@Q (6.4)
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where g() is the score function and G(*) is the derivative of the score function

defined as

g(z:)=~ it%%—'g%_—) [f(zkIZk'l)r (6.5)
G(z,)= M (6.6)

d(z;)

where f is the moment generating function for the observation sequence and Z*™' is

the set of observations (z1 295" 5 25y )

The score function approach has the intuitively appealing characteristic that it
de-emphasizes large measurement residuals if the noise distribution is long tailed and
tends to emphasize large residuals if the distribution is short tailed [Wu and Kundu,
1992]. Note that the score function reduces to the linear gain equations of the
Kalman filter if v is Gaussian. For a proof, see Wu and Kundu [1992] and Masreliez

[1975].

The evaluation of the score function requires computation of the convolution

of f (Hkxk IZH) with f(v,) [Wu and Kundu, 1989]. Numerical convolution can

itself be difficult to implement, and this problem is compounded when the moment
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generating functions are unknown. Three basic approaches have been used to
address this problem. The first approach uses a series expansion to approximate the
score function [Wu, 1994; Wu and Kundu, 1989]. The second approach uses
influence curves that have a desired functional form based on the expected noise
characteristics [Hewer et al., 1987]. In other words, the influence function is chosen
to emphasize or de-emphasize measurement residuals that arise from the non-
Gaussian measurement errors. The third approach attempts to approximate the non-
Gaussian observation noise as a finite sum of Gaussian noises [Hilands and
Thomopoulos, 1994]. The Gaussian sum approach proves to be computationally
intensive, even for off-line analysis. The score function approximation method and
the influence function method have been applied successfully to the case of radar
glint, a phenomenon that leads to correlated measurement errors [Wu, 1994; Hewer

etal., 1987].

6.2 Simulation Results and Discussion

Applying the score function method and the influence function method to an
integrated GPS and gyro attitude determination system could lead to alternative
multipath mitigation methods. The fact that the GPS attitude errors are non-
Gaussian suggests that multipath errors may be reduced using a nonlinear Kalman

gain function. Preliminary numerical investigations using a nonlinear gain function
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based on heuristics rather than evaluation of the score function have yielded
promising results. The gain function used was based on the functional form of the
“Huber psi” influence curve [see Hewer et al., 1987], although other forms of the
gain function could be evaluated. The form of the nonlinear gain function used in
this preliminary analysis is shown in Fig. 6.1. Note that this gain function tends to

de-weight large measurement residuals due to multipath errors.
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Fig. 6.1. Nonlinear Kalman Gain. Figure shows a comparison of the linear Kalman
gain function (dashed line) and the nonlinear gain function (solid line).

A sample of attitude estimation errors using the nonlinear gain function is

shown in Fig. 6.2, using RADCAL GPS data and high quality gyros (simulation two,
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Table 3.1). The point where the nonlinear gain breaks from the Kalman gain was
chosen heuristically, and no attempt has been made to characterize the best nonlinear
gain function analytically. The fact that the nonlinear approach appears to
outperform the measurement differencing approach in the case shown in Fig. 6.2
indicates that this may be a fruitful area of future study. The accuracy of the line bias
estimates using the nonlinear and measurement differencing filters is compared in Fig.
6.3. Note that the two methods give gyro bias results that are indistinguishable for

all practical purposes.

Attitude Errors: Nonlinear and Measurement Differencing
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Fig. 6.2. Attitude Error Comparison for Nonlinear Filter. Plots show attitude
estimation errors for measurement differencing and nonlinear filter algorithms.
GPS data from RADCAL is used with simulated inertial quality gyros.
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Fig. 6.3. Gyro Bias Error Comp

arison for Nonlinear Filter. Plots show bias

estimation errors for measurement differencing and nonlinear filter algorithms.

measurement differencing algorithms.

GPS data from RADCAL is used with simulated inertial quality gyros.

Table 6.1 compares the computed 1-G attitude errors for the nonlinear and

Note that the nonlinear filter algorithm

produces error standard deviations at least a factor of two better than the

measurement differencing approach.
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Table 6.1. Computed error statistics for Nonlinear Kalman Filter and Measurement
Differencing Kalman Filter Algorithms using GPS RADCAL Data.

YAW ROLL PITCH

std error | std error | std error

NONLINEAR FILTER 0.29deg | 0.18deg | 0.06 deg

MEAS. DIFFERENCING 0.73deg | 0.61 deg | 0.26 deg

The measurement differencing method accounts for the time correlated
multipath errors as a first-order Markov process. This approach more closely models
multipath errors than the nonlinear method which does not include a time constant in
the measurement model. Inclusion of a simple dynamic model for multipath in the
nonlinear filter could further improve estimation accuracy. A detailed analysis of the
nonlinear filtering approach, including an analytical characterization of the non-
Gaussian nature of the time-correlated measurements, is an interesting topic for
future study that could lead to further advances in multipath mitigation for integrated

GPS attitude determination systems.

6.3 Summary and Conclusions

Preliminary analysis of an attitude estimation algorithm for combining GPS
and gyros using a nonlinear gain function was presented in this chapter. This analysis

suggests that errors can be reduced by a factor of two over the measurement
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differencing algorithm. I plan to pursue the development of these nonlinear methods

for reducing GPS multipath errors in integrated attitude determination systems in my

future research.




Chapter 7:

FUTURE WORK AND SUMMARY

Applications and extensions of the integrated GPS attitude determination
methods developed in this dissertation are considered in this chapter. The
applications where combined use of GPS and gyros could lead to performance
improvements over stand-alone systems include dynamic mode identification for

large space structures and modeling of additional error states.

The chapter is organized as follows. First, two levels of integration for GPS
and gyro measurements, loosely and 'tightly coupled, are presented. Second,
applications where the state vector is augmented in a tightly coupled configuration
are discussed as promising methods to characterize dynamic structural modes or
GPS error states such as line biases. Third, future work for JAWSAT is discussed.

Finally, the research contributions of this dissertation are summarized.
7.1 Levels of Sensor Integration
There are two main design approaches for integrating gyroscope angular

velocity measurements with GPS, a loosely coupled and a tightly coupled

configuration. Some integrated applications inay require raw GPS differential phase
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measurements rather than processed attitude solutions. The loosely coupled
approach uses computed GPS attitude point solutions combined with gyro
measurements. The advantage of the loosely coupled formulation is that existing
receiver hardwgre and software can be used without modification or additional cost.
The loosely coupled configuration is depicted in Fig. 7.1. Note that the JAWSAT
attitude estimation system will be configured in this loosely coupled mode consistent

with a low cost design philosophy.

Angular Velocity | atitude Estimation

- Gyro Bias

- Mulitpath Mitigation
- Vibration Modes

Attitude

Fig. 7.1. Loosely Coupled Attitude Estimation Algorithm.

The tightly coupled formulation requires GPS differential phase
measurements to be incorporated with gyro measurements as shown in Fig. 7.2.
Observability of certain states may be improved due to the relative abundance of
differential phase measurements in the tightly coupled formulation. This improved
observability may outweigh the additional complexity in hardware and software
required to implement this approach for certain applications. Assessing the
performance of the loosely coupled and tightly coupled algorithms for the application

areas discussed below is an open area for future research.
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Angular Velocity | atitude Estimation

. - Gyro Bias

m == — === 1 - Mulitpath Mitigation
A Phase - Vibration Modes

Fig. 7.2. Tightly‘Coupled Estimation Algorithm.

7.2 Augmenting the State Vector

In addition to spacecraft attitude, it may be possible to estimate several other
key quantities using GPS and gyro measurements. Three examples are presented
that previously have been addressed using only GPS differential phase measurements.
The addition of gyro measurements could enhance and extend these existing
methods. The additional applicatians include system identification for flexible space
structures, estimation of GPS antenna baselines, and calibration of GPS hardware

biases.
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Large Space Structure System Identification

Although structural flexure is typically a negligible problem for small, low-
cost spacecraft, large space structures may be able to exploit the combination of GPS
and gyro measurements for system identification. The combination of precision
gyros and a multi-antenna GPS attitude determination receiver is planned for

NASA’s Space Station Alpha [Saunders and Barton, 1995].

Because of its large size and the difficulty of characterizing vibration modes
in the presence of gravity prior to launch, on-orbit characterization of the Space
Station structure may be required [Saunders and Barton, 1995, p. 635]. The
differential measurements over relatively long baselines inherent in a GPS attitude
system make it attractive for characterizing structural vibration in addition to
attitude. Combining gyro and GPS measurements may be ideally suited to sensing
changes in the length and orientation of the antenna baselines due to structural

vibration.

In the absence of gyro measurements, GPS carrier phase interferometry has
already been proposed for structural mode identification. Teague and Parkinson
[1993] describe a system identification experiment for a vibrating beam using a GPS
pseudolite.  Their preliminary results showed very close agreement between

predicted behavior and measured response using what they call “self-differential
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GPS.” These promising results could be extended to include the gyroscope
measurements available on Space Station to characterize the vibrations of the
structural members on which the GPS antennas are located.

Two previous studies aimed at integrating GPS and gyro measurements for
attitude and antenna baseline estimation have been reported. Sullivan [1995, 1994]
has described a combined GPS/INS system that integrates GPS differential phase
measurements and gyroscope angular velocity measurements in an Euler angle
attitude formulation. Litton Guidance and Control Systems, a leading manufacturer
of fiber optic gyros, has proposed a similar configuration using a single GPS antenna
baseline in an azimuth alignment system using GPS and FOGs [Tazartes et al.,
1995]. Neither of these studies hag explicitly considered structural modes as states
to be estimated. These studies, c.ombined with the attitude estimation algorithms
presented in Chapters 3 and 5, could be extended to large structures such as Space

Station based on the method outlined by Teague and Parkinson [1993].

The accurate angular velocity measurements available directly from the gyros
may allow structural vibration to be distinguished from rigid body attitude dynamics.
Multipath errors, on the other hand, may be indistinguishable from slow vibration
modes. Developing and testing algorithms to estimate structural modes in addition
to attitude has the potential to advance the development of integrated INS/GPS

attitude determination systems.
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GPS Error State Modeling

Antenna Baseline Estimation

One of the key factors affecting performance of a GPS attitude determination
system is accurate knowledge of the antenha baselines. A baseline error of only 1 cm
over a baseline length of 1 m can lead to attitude errors on the order of 0.5 deg. For
terrestrial applications, a static baseline self-survey lasting over eight hours is
performed [Trimble, 1994]. Such a survey is generally not possible for a fully
integrated spacecraft. A critical step in spacecraft attitude determination has been
the development of algorithms to compute and refine antenna baseline estimates on

orbit [Ward and Axelrad, 1995; Axelrad and Ward, 1994].

Note that neither the static self-survey nor the on-orbit baseline estimation
algorithm allows simultaneous attitude and baseline estimates to be computed due to
a lack of observability. Cohen and Parkinson [1992] presented an algorithm for
estimating aircraft attitude and wing flexure constrained to a single axis together in
real time. The addition of gyro measurements allows full three-dimensional antenna
baseline estimates to be considered along with attitude as reported by Sullivan

[1994].
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Line Bias Calibration

Using gyro measurements in an integrated line bias estimation algorithm may
improve our ability to isolate line bias variations from other effects, such as errors
due to baseline flexure. The variations in the bias values may be better tracked over
time and possibly correlated with environmental effects such as magnetic field
changes or thermal variations. The possibility that line biases might change over time
due to environmental effects is an important facet of GPS attitude determination that
has not yet received adequate attention. The inclusion of gyro measurements in a
line bias estimation scheme could lead to a more comprehensive method for modeling
and predicting changes in the line bias parameters, particularly in the harsh tehrmal

and electromagnetic environment environment experienced in spacecraft applications.

Cross-Correlation of GPS Attitude Solutions

Since the attitude point solution computed by the Vector receiver represents
a composite of the multipath-contaminated phase measurements at each antenna, the
GPS attitude output does not report three statistically independent quantities.
Further characterization of the error correlation present in the GPS attitude receiver
output could provide an extension of the nonlinear estimation methods discussed in
the previous subsection. In other words, if the time varying off-diagonal terms in the
measurement error covariance matrix can be computed, then the cross-correlation
information can be used by the integrated attitude filter with GPS and gyro

measurements.
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An analytical formulation of the cross-correlation could be carried out by
tracing the effect of errors in the differential phase measurements through the GPS
attitude solution equations. This analytical formulation could then be compared with
experimentally determined cross-correlations for validation. These cross-covariance
terms could then be used in integrated algorithms to improve the fidelity of filtered

attitude solutions.

7.3 Future Work for JAWSAT

As design, fabrication and testing of JAWSAT subsystems continues, several
important issues are being addressed for the attitude determination system. The final
design and fabrication of the sun sensors has not been completed, and the gyro
hardware has not been selected. Once this hardware configuration is finalized,

system integration and flight software need to be addressed.

Currently, electromagnetic interference testing is underway at the NASA
Lewis Research Center- to characterize the effects of the PPTs on other critical
systems including the GPS attitude receiver. The results of these tests have
important implications for spacecraft operations as discussed in Section 3.7.
Namely, the extent to which the GPS receiver and other on-board systems will be

hindered by the PPTs will determine many of the operational constraints of the
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spacecraft. These constraints will be used to finalize the mission profile, the orbit
maneuvering experiments, and consequently the flight software for many of the on-

board systems.

Several open issues also remain in the software architecture for the real-time,
on-board implementation of the Vector receiver. These issues include definition of
input/output data, finite word length, computer speed and operating system, and

failure modes.

7.4 Summary of Research Contributions

An integrated GPS attitude determination system has been developed to meet
JAWSAT operational requirements. In addition, this dissertation focused on attitude
estimation algorithms to improve the accuracy and redundancy of an integrated

system composed of a GPS attitude receiver, FOGs, and digital sun sensors.

Estimation algorithms using GPS and gyros were developed using a
measurement differencing approach to reduce the effects of multipath errors in the
attitude solution. Measurement differencing accounts for time-correlated

measurement errors by modeling them as a first-order Markov process with a known
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time constant. Applying this measurement differencing technique to GPS multipath

errors reduces attitude estimation errors from standard Kalman filtering approaches.

A decentralized attitude estimation algorithm based on the federated filter
was used in a framework that enhances redundancy and fault tolerance. The global
state estimate update process was extended to account for the nonlinear combination
of quaternions components, and a measurement differencing approach was derived to
account for time-correlated multipath errors in the GPS attitude receiver. Simulation
results show that the federated filter with measurement differencing reduces

multipath errors in the integrated attitude determination system.

Sun sensor measurements were combined with gyro measurements using a
dead zone algorithm. This algorithm was developed to overcome filter errors
introduced by the large quantization errors in the digital sun sensor. The dead zone
algorithm allows the attitude determination system to meet JAWSAT mission

requirements during extended intervals when GPS measurements are not available.

Finally, preliminary results of a nonlinear filtering method to reduce multipath
errors were also introduced. This method used a nonlinear gain function to de-
emphasize the influence multipath errors that result in large measurement residuals.
Further characterization of the statistical distribution of GPS attitude errors, and the

evaluation of the associated nonlinear gain function, is identified as a potentially
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fruitful area of future research in the development of improved attitude estimation

methods.

7.5 Conclusion

This dissertation focused on the integration of GPS measurements into an
attitude determination system for small satellites. The use of GPS in combination
with other sensors has been identified as a fruitful area for achieving improved
performance at a lower cost and weight [NRC, 1994]. Algorithms have been
developed for combining measurements from a GPS attitude receiver with other
sensors that improve the accuracy of attitude estimates in the presence of multipath.
The developments presented in this dissertation advance the state of the art in
combined attitude determination systems for small satellites using GPS and other

S€nsors.
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